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Abstract— Recently the applications of unmanned systems are 

steadily increasing. Unmanned Surface Vessels (USV) can be 

used for military and rescue purposes.  This paper designs a 

Fuzzy-LQR controller for Heading control of the USV system. A 

new analysis of the fuzzy system behavior presented helps to 

make possible precise integration of LQR features into fuzzy 

control. This Fuzzy-LQR controller is used to adjust the closed 

loop controller feedback gains in order to obtain the desired 

Heading (Yaw angle) under variations of the USV parameters 

and environmental variations. Matlab Simulink  has been used to 

test and compare the performance of the LQR and Fuzzy-LQR 

controllers. The Fuzzy-LQR controller for USV is verified by 

simulation to show better performance by suppressing the 

uncertainty instability more effectively than the LQR besides 

minimizing the time of the mission proposed. 
 

Keywords—USV, Fuzzy control, LQR control, Heading control 

 

I. INTRODUCTION 

nmanned robotic vessels are capable of performing 

desired tasks in unstructured, uncertain and potentially 

hostile environments. They may be remotely-operated or 

function (semi-) autonomously without human intervention. 

Unmanned surface vessels (USVs) fill an increasingly 

important niche in the pantheon of robotic vessels. Equipped 

with appropriate sensors, USVs can collect information about 

the subsurface and above-surface environments and they can 

be used for military and rescue purposes. 

       The ship steering autopilot is one of the earliest 

applications of automatic control theory. A simplified PID 

type of course-keeping autopilot was introduced in the 

early1920s (Minorsky, 1922). Thanks to the deployment of the 

global positioning system (GPS) in the 1970s, integration of 

the positional data from the GPS, into ship steering autopilots, 

forms the so-called track-keeping autopilots. According to the 

mathematical model, during the controller design process, we 

can classify the track-keeping autopilot design methods into 

two categories, the model-based approach and the model-free 

approach. The LQG optimal control (Holzhuter, 1997) and the 

HN control (Morawski andPomjrski,1998) are typical model-

based methods[1]. The fuzzy control (Vaneck, 1997) and the 

artificial neural network (ANN) (Hearn etal.,1997) belong to 

the model-free approach.[2],[3] 

     The Nomoto model was based off of a four degree of 

freedom model. In order to simplify the model, the roll motion 

was neglected. This simplification is acceptable because roll is 

less significant than yaw, surge, and sway. from this nonlinear 

three degree of freedom planar motion(surge, sway, and 

heave) model, with force and moment inputs, we make several 

simplifying assumptions to obtain low order models suitable 

for identification from experimental data.[4] 

     LQR is a method in modern control theory that used 

state-space approach to analyze such a system. Using state 

space methods it is relatively simple to work with a multi-

output system. The system can be stabilized using full-state 

feedback system. In designing LQR controller, lqr function in 

Matlab can be used to determine the value of the vector K 

which determined the feedback control law.[5] 

     Fuzzy Logic Controller (FLC) is conceived as a better 

method for sorting and handling data but has proven to be an 

excellent choice for many control system applications because 

of non-linearity, complex mathematical computation and real-

time computation need. [6] 

     To synthesize a fuzzy controller, we pursue the idea of 

making it match the LQR for small inputs since the LQR was 

so successful. Then, we still have the added tuning flexibility 

with the fuzzy controller to shape its control surface so that for 

larger inputs it can perform differently from the LQR.[7] 

 This paper designs a Fuzzy controller for tuning the state 

feedback gains of the USV system. This Fuzzy-LQR 

controller is used for heading control of an unmanned surface 

vehicle. The Fuzzy-LQR simultaneously makes use of the 

good performance of LQR in the region close to switching 

curve, and the effectiveness of fuzzy control in region away 

from switching curve. 

 The paper is structured as followings: In section 2 the 

dynamic modelig of the USV is described. The controllers are 

presented in section 3. The simulations supporting the 

objectives of the paper and results are presented in section 

4.concluding remarks are presented in section 5. 

 

II. Dynamic Modeling of USV 

A. Modeling in Absence of Currents 

With respect to figure 1, the 6 degrees of freedom 

kinematics of a vessel in the absence of currents can be 

described by: 
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with c = cos, s = sin, and t = tan. 

 
Fig. 1. six DOF vessel model  

 

To simplify matters, we will ignore the roll, pitch, and 

heave dynamics and consider USV motion in the horizontal 

plane. This reformulation leads to ignoring planing dynamics, 

implying that the boat's dynamics cannot be modeled with 

constant parameters through the entire performance envelope. 

Different planing situations can be recovered by having 

different added mass values for each planing mode. Figure 1 

illustrates the state and input variables for a planar USV model 

with a gimbaled thruster (e.g., an outboard engine).[8],[9] 

 
Fig. 2. Three DOF of vessel model 

 

The kinematic model for a USV in planar motion in the 

absence of currents is: 
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B. LOW SPEED NONLINEAR PLANAR MODEL 

The dynamics of a boat can be described, using the 

notation 
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Where M is the mass matrix, C is the Coriolis and 

centripetal matrix, D is the damping matrix, and f are the 

control forces and moments. The mass matrix M and Coriolis 

and centripetal matrix C can be expressed as following 

relations:  
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Also assuming planar motion, the linear damping matrix 

takes the form: 
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At very low speeds, potential fow theory provides a good 

description of the dominant hydrodynamic effects. 

Incorporating inputs and decoupled linear damping terms 

gives: 
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In these equations, the propulsor generates a surge force 

Xctrl which may, in general, be a complicated function of the 

vehicle state as well as throttle setting  (measured in 

percent) and the steering angle r . Likewise, the steering 

moment Nctrl( r  ) and the side force Yctrl( r  ) 

resulting from control detections may also depend on the full 

state. The model can be put in the state-space form: 
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C. LINEAR NOMOTO MODEL 

 

Linearizing (8) about the steady motion corresponding 

to the state variable values: 

0; 0; 0u u v r    

The model can be put into state-space form: 
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Nomoto and colleagues [10] suggested that turn rate can 

be described as a simple 2nd order equation relating rudder 

angle,  , and turn rate, r, at a given forward speed 0u : 

3
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K is a rudder gain and iT  (i=1,2,3) is derived by 

identification of the vessel. 

For the studied USV model the coefficient are derived by 

system Identification and showed in Table 1.[10],[11] 
Table 1 

Linear model coefficients 

K  0.365 (1/s) 

1T  11.8 (s) 

2T  7.8 (s) 

3T  18.5 (s) 

 

III. HEADING CONTROL ALGORITHM  DESIGN 

The control is carried out based on the fuzzy model via the 

so-called parallel distributed compensation scheme. 

LQR is used to determine best values for parameters in 

fuzzy control rules in which the robustness is inherent in the 

LQR thereby robustness in fuzzy control can be improved. 

With the aid of LQR, it provides an effective design method of 

fuzzy control to ensure robustness. 

The motivation behind this scheme is to combine the best 

features of fuzzy control and LQR to achieve rapid and 

accurate tracking control of a class of nonlinear systems. 

The results obtained show a robust and stable behavior 

when the system is subjected to various initial conditions, 

moment of inertia and to disturbances. 
 

A. Linear Quadratic Regulator Controller: 

The modern control system design is based directly on the 

state variable model, which contains more information about 

the system. Another central concept is the expression of 

performance specifications in terms of a mathematically 

precise performance criterion that then yields matrix equations 

for the control gains. The classical successive loop closure 

approach means that the control gains are selected 

individually. In contrast, solving matrix equations in modern 

control allows all the control gains to be computed 

simultaneously so that all the loops are closed at the same time 

with stable closed loop poles(as an algorithm condition). This 

could be achieved by selecting the control input u (t) to 

minimize a quadratic cost or performance index (PI) of the 

type 

0

1
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2
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
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Where Q and R are symmetric positive semi-definite 

weighting matrices ,x u  are state and control stdeviations 

respectively. 

 

B. Fuzzy controller 

The principles of fuzzy systems are introduced here and 

then the LQR Integrated fuzzy control is designed . 

A fuzzy system comprises a fuzzification unit, a fuzzy rule 

base, an inference engine and a defuzzification unit. The fuzzy 

system can be viewed as performing a real (non-fuzzy) and 

nonlinear mapping from an input vector 
nX R , to an output 

vector ( ) my f X R   (n and m are input and output vector 

dimensions, respectively). The interfaces between real world 

and fuzzy world are a fuzzifier and a defuzzifier; the former 

maps real inputs to their corresponding fuzzy sets and the 

latter performs in the opposite way to map from fuzzy sets of 

output variables to the corresponding real outputs. There are 

two types of fuzzy systems that are commonly used; Takagi-

Sugeno-Kang (TSK) and fuzzy systems with fuzzifier and 

defuzzifier. In this work, we used the second type. The fuzzy 

rule base consists of fuzzy rules, which use linguistic If-Then 

sentences to describe the relationship between inputs and 

outputs. 

The antecedent fuzzy set (fuzzy Cartesian product) of each 

rule 1 2 n
F F F  , is quantified by the t-norm operator which 

may be defined as (13), the min-operator or the product 

operator: 
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The defuzzification is performed using (14), where μj is the 

firing strength of the antecedent part of the jth rule and is 

given by : 
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C. The Fuzzy Control LQR (FC-LQR) 

The LQR fuzzy control utilizes both advantages from the 

LQR controller and fuzzy logic controller, as LQR controller 

can easily satisfy the flying qualities and pilot rating 

requirements and fuzzy control can cope with the nonlinearity 

of the system, introducing a smart way to modifying the 



 4 

output gains according to the actual performance, blending the 

dynamic response that generating better performance than 

using LQR alone. 

A FUZZY-LQR is designed which meets the requirements 

of small overshoot in the transient response and a well damped 

oscillations with no steady state error Fig. 3 describes the 

Fuzzy-LQR controller for yaw angle control. The system 

dynamics is described by LQR design process for yaw control. 

 
Fig. 2. Fuzzy-LQR controller for yaw angle control  

 

  The Fuzzy LQR  controller, which takes error "e" and 

rate of change-in-error "edot" as the input to the controller 

makes use of the fuzzy controller rules to modify state 

feedback gains K=[K1,K2,K3] on-line. The Fuzzy LQR 

controller refers to finding the fuzzy relationship between the 

three gains of state feedback, K1, K2 and K3  and "e" and 

"edot", and according to the principle of fuzzy control 

modifying the three gains in order to meet different 

requirements for control gains when "e" and "edot" are 

different and making the control object produce a good 

dynamic and static performance. 

 For the input variables of "e" and "edot", seven fuzzy 

values is chose (NB, NM, NS, ZO, PS, PM, PB) which NB 

denotes Negative Big, NM denotes Negative Medium, 

Negative Small (NS) , Zero (ZO) , Positive Small (PS), 

Positive Medium (PM) and PB denotes Positive Big, and for 

the outputs we chose nine fuzzy values (NVB, NB, NM, NS, 

Z, PS, PM,PB,PVB) which NVB denotes negative Very large 

and PVB denotes Positive Very Big.  

The membership functions of all the outputs have been 

chosen identical. Fig. 4, Fig. 5 shows these membership 

functions. This membership functions are combined of 

triangular and Gaussian. The width of the fuzzy sets used for 

controllers are not same and they have been determined by 

trial and error experience. The fuzzy sets width of outputs has 

been chosen [-500,500]. for inputs, the range of the error was 

chosen [-1 1] and for error rate have been chosen [-10 10]. 

 

 

 
Fig.4. Membership function of Inputs  

 

 

 
Fig. 3. Membership function of Outputs 

 

 

 

 

 

IV. RESULTS AND SIMULATION STUDY 

 

In this section, we will present simulation results of 

the proposed fuzzy LQR controller for yaw control of 

USV and compare them with the LQR’s.The 

mathematical dynamical model of the Unmanned Surface 

Vessel as well as the controllers have been developed in 

Matlab Simulink for simulation. 

The simple LQR controller gains was computed by the 

lqr function of MATLAB, and the appropriate Q and R 

matrices were calculated by trial and error approach. The 

resulting gain is: K=[-316.2 -411.8 -265.4]. 

The step response of two controllers are compared and 

presented in Fig. 6. Dotted black line is the input, dashed 

red line is LQR response and Solid blue line is Fuzzy-

LQR response. A noticeable decrease in overshoot is seen 

in Fuzzy-LQR controller and the settling time decreased 

in Fuzzy-LQR procedure. Also the oscillating nature of 

LQR response in completely removed in Fuzzy-LQR 

response. Clearly the Fuzzy-LQR controller shows better 

results than simple tuned LQR. 
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Fig. 4. Step response of USV 

 

For the tracking problem we inserted the sine wave as 

input and the responses of controllers are shown in Fig. 7. 

. Dotted black line is the input, dashed red line is LQR 

response and Solid blue line is Fuzzy-LQR response. 

Obviously the Fuzzy-LQR controller tracked the input 

displacement better, and this controller tracks the desired 

path more rapidly. 

 

 
Fig. 5. Tracking response for USV 

 

  

 

 

V. CONCLUSIONS 

In this paper we first derived the low speed 

nonlinear planar model of a vessel. Since the vessel’s 

nonlinearities and the variations in environmental 

forces, the conventional controllers show poor 

performance. We investigate a new procedure to 

overcome this problem.  

 Linear Quadratic Regulator (LQR) is modern 

linear control that is suitable for multivariable state 

feedback and is known to yield good performance for 

linear systems. The fuzzy control is known to have 

the ability to deal with nonlinearities without having 

to use advanced mathematics. 
By blending these two controllers, a Fuzzy-LQR 

controller for the Heading control of an USV has 

been designed. The main idea is to design a 

supervisory fuzzy controller capable to adjust the 

closed loop controller feedback gains in order to 

obtain the desired Heading (Yaw angle) under 

variations of the USV parameters and environmental 

variations. The motivation behind this scheme is to 

combine the best features of fuzzy control and that of 

the optimal LQR.  

Various simulations based on the Matlab 

Simulink, were performed to test and compare the 

LQR and Fuzzy-LQR controllers. The weighting 

matrices of LQR are calculated by trial and error 

approach to achieve the best performance. 

The designed Fuzzy-LQR adjusts the feedback 

gains based on rule-base which get error and error 

rate as input. Performance of Designed Fuzzy-LQR 

controller is superior to LQR. It tracks the desired 

path rapidly and more precisely than conventional 

controllers. Therefore the designed USV model and 

controller will be useful for advanced real embedded 

platform. 
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