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Abstract— Spherical mobile robot has good static and 

dynamic stability, which allows the robot to face different kinds 

of obstacles and moving surfaces, but the lack of effective control 

methods has hindered its application and development.  In this 

paper, we propose a direct approach to path planning of a 2-

DOFs (Degrees of Freedom) spherical robot based on Bellman’s 

“Dynamic Programming” (DP). While other path planning 

schemes rely on pre-planned optimal trajectories and/or 

feedback control techniques, in DP approach there is no need to 

design a control system because DP yields the optimal control 

inputs in closed loop or feedback form i.e. after completing DP 

table, for every state in the admissible region the optimal control 

inputs are known and the robot can move toward the final 

position. This enables the robot to function in semi- or even non-

observable environments. Results from many simulated  

experiments  show  that  the  proposed  approach  is  capable  of 

adopting  an optimal  path  towards  a  predefined  goal  point  

from  any  given position/orientation in the admissible region. 

Keywords— spherical mobile robot; path planning; Dynamic 

Programming. 

I.  INTRODUCTION  

In recent years, the spherical mobile robot as a member of 
the new type of mobile robots has made its debut, which 
consists of a ball-shaped outer shell to include all its 
mechanism, control devices and energy sources in it. There are 
many advantages to the use of spherical robot designs, for 
example the spherical shape allows the robot to face different 
kinds of obstacles and moving surfaces, since a rolling ball 
naturally follows the trajectory of least resistance and they 
cannot be overturned. So they have the advantage to survive in 
such unmanned or hazardous environment as outer planets, 
deserts and earthquake ruins, to do some exploration or 
reconnaissance tasks [1-6]. The status of the design of spherical 
rolling robots is reviewed in [7].  

From the perspective of control, spherical robot is a kind of 
non-holonomic system that can control more degrees of 
freedom with fewer drive inputs. Due to the complexity of its 
control problems, there still have no effective control 
methodologies for spherical robot, although some researchers 
devoted significant work. A three-step algorithm to solve the 
path planning of a sphere rolling on a flat surface was proposed 
by Li and Canny [8]. Using individual control inputs, two 
algorithms were presented for partial and complete 
reconfiguration in [9]. The first strategy uses spherical triangles 

to bring the sphere to a desired position with a desired 
orientation. The second strategy uses a specific kinematic 
model and generates a trajectory comprised of straight lines 
and circular arc segments. Mukherjee and Das et al. [10] 
proposed two computationally efficient path planning 
algorithms for a rolling sphere. Moreover, reconfiguration of a 
rolling sphere with the perspective of evolute–involute 
geometry was given in [11]. Shourov Bhattacharya and Sunil 
K. Agrawal deduced the first-order mathematical model of a 
kind of spherical robot from the non-slip constraint and the 
conservation of angular momentum and studied its trajectory 
planning based on the strategy of optimal time and energy, 
simulations and experiment results were presented [12, 13]. 
Bicchi, et al. [14, 15] established a simplified dynamic model 
for a spherical robot and discussed its path planning on a plane 
with obstacles. Joshi and Banavar et al. deduced the kinematics 
model of a spherical robot using Euler parameters and 
investigated the path planning problems [16, 17]. Based on the 
Ritz approximation theory, the near-optimal trajectory of BHQ-
2 was planned with the Gauss-Newton algorithm in [6].  

According to the above review, the motion analysis of 
spherical robot have been considered in two different aspects: 
first is the path planning of spherical robot which means 
finding an optimal trajectory between the initial and final states 
and second is tracking the desired trajectory via controlling 
motion of the robot [18, 19]. 

 In this paper, path planning of a 2-DOFs pendulum-driven 
spherical mobile robot is considered using Bellman’s Dynamic 
Programming (DP). DP is used to find an optimal trajectory 
between the initial and final positions via finding the 
corresponding control inputs. In our proposed method, there is 
no need to design a control system because DP yields the 
optimal control inputs in closed loop or feedback form i.e. for 
every state in the admissible region the optimal control inputs 
are known and the robot can move toward the final position.  

The outline of the paper is as follows. The kinematic model 
of the spherical robot is described in section 2. In section 3, a 
brief description of DP and its implementation for the spherical 
robot are presented. Section 4 provides simulation results 
through MATLAB. 

II. KINEMATIC MODEL OF THE SPHERICAL ROBOT 

This paper focuses on a simple spherical robot that can be 
developed using a pendulum based design. Fig. 1 shows a 
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schematic of the internals of a robot called Rotundus. This 
design consists of two motors. One of them is attached to the 
horizontal axis that goes through the sphere. In the center there 
is a pendulum that drops down. When the motor is activated, 
the sphere will move as long as the weight of the pendulum has 
enough inertia that it is easier for the casing to spin than the 
pendulum to go around. The pendulum can move to the left and 
right by the other motor, causing the robot to turn. So it has a 
pendulum with 2 DOFs [7]. 

Consider the motion of a sphere on a flat plate (rolling 
without slipping). The contact point can be represented as 
follows in the coordinate system attached to the sphere center. 

 (   )  (

         
         
     

)                                                           ( ) 

where ρ,ϕ,θ are variables specifying a point in the spherical 

coordinates. The contact trajectory on the plate is specified by 

C=(x,y) in the xyz-coordinates attached to the plane. The 

contact trajectory on the sphere is indicated by C'= (θ,ϕ) in the 

coordinates attached to the sphere. In Cartesian coordinates, the 

rotation angle of the sphere with respect to the surface is the 

angle between two coordinate systems at the contact point (see 

Fig. 2). This angle is known as the “holonomy angle”, 

indicated by ψ. The solution of the forward problem in which 
we seek C with knowledge of C' is obtained as follows [20, 

21]: 
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where the input variables are θ and φ. These variables 

represent a trajectory on the sphere. Since the inputs needed to 

drive the spherical robot are θ and φ, equation (2) corresponds 

to the forward kinematics of the robot. 

The robot speed is low enough to neglect the dynamics 

involved, thus the sphere- plate contact point stays always 
underneath the mass suspended down the pendulum. 

Therefore, by determining θ and φ, the center of mass and 

consequently the position of the contact point could be 

determined from equation (1). As explained before, the motors 

position the pendulum inside the sphere to change the mass 

center for a desired move. Thus by changing θ and φ we can 

find a trajectory which shows the contact point trajectory on 

the sphere. Then, using equation (2) we can find x and y 

which represent the contact point trajectory on the plate. 

 

 
 

 

 

 

 

 

 

 

 

 

 

III. PATH PLANNING USING DP 

Once the performance measure (cost) for a system has been 
chosen, the next task is to determine a control function that 
minimizes this criterion. One of the methods of accomplishing 
the minimization is Dynamic Programming developed by R. E. 
Bellman. This method leads to a functional equation that is 
amenable to solution by digital computer.  

The following subsection gives a brief description of DP 
and implementation of it to our path planning problem is 
explained after [22, 23, 24]. 

A. Description of DP 

The closed loop or feedback optimal control equation is 
called the optimal control law, or the optimal policy. The 
optimal control law specifies how to generate the control value 
at time t from the state value at time t. In DP an optimal policy 
is found by employing the intuitively appealing concept called 
the principle of optimality. This principle states that “An 
optimal policy has the property that whatever the initial state 
and initial decision are, the remaining decisions must constitute 
an optimal policy with regard to the state resulting from the 
first decision.” DP is a computational technique which extends 
the decision-making concept to sequences of decisions which 
together define an optimal policy and trajectory. In other 
words, instead of trying all allowable paths leading from each 
state to the final state and selecting one with lowest cost which 
is an exhaustive search, DP considers the application of the 
principle of optimality. To formulize the computational 
algorithm for a routing problem the following notation is 
introduced: 
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By using this notation the principle of optimality implies 
that 

Fig.1. Schematic of the intervals of a pendulum-driven spherical robot 

 

Fig. 2. Holonomy angle in spherical robot 
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and the optimal decision at α,u^* (α), is the decision that leads 
to 
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   }                                       ( ) 

These two equations define the algorithm Dynamic 
Programming. The routing problem should be “solved” in a 
table, where only the consequences of lawful decisions are 
included. Once the table has been completed, the optimal path 
from any state to the final state can be obtained by entering the 
table at the appropriate state and reading off the optimal 
heading at each successive state along the trajectory. Some 
characteristics of DP solution are as follows: 

- Since a direct search is used to solve the functional recurrence 
equation, the solution obtained is the absolute (or global) 
minimum. DP makes the direct search feasible because instead 
of searching among the set of all admissible controls that cause 
admissible trajectories, we consider only those controls that 
satisfy an additional necessary condition-the principle of 
optimality. 

- DP yields the optimal control in closed loop or feedback form 
i.e. for every state value in the admissible region the optimal 
control is known. 

- DP uses the principle of optimality to reduce dramatically the 
number of calculations required to determine the optimal 
control law. 

B. Implementation of DP for path planning of spherical robot 

In this subsection, the process of implementing DP for the 
spherical robot to find a set of optimal motions to reach the 
final position is explained. For convenience dimensionless 
kinematic equations are obtained and used here. 

Assuming  ̂  
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where T is the total duration of motion and ρ is the radius of 
the spherical shell. 

By substituting these equations in the kinematic model of 
the spherical robot obtained in section II we have: 
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Consider the following equation of the spherical robot 

                             ̇̂    ̇̂           ̂̇                          ( ) 

where  ̇̂ and  ̂̇ are the control variables. Before the numerical 
procedure of DP can be applied, the system differential 

equation must be approximated by a difference equation. This 

can be done most conveniently by dividing the time interval 

       (   ̂   ) into N equal increments,    (  ̂). 
Then we have: 
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It will be assumed that   ̂ is small enough so that control and 

state variables can be approximated by a piecewise-constant 

function that changes only at instants  ̂      ̂    ̂   (  
 )  ̂; thus, for  ̂     ̂  (           ),  

 ̂([   ]  ̂)   
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 ̂(   ̂) is referred to as the  th value of   and is denoted by 

 ̂( ). So the system difference equation can be written  
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In a similar manner for the other states we have: 
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      The performance measure (cost) to be minimized here is 
the energy consumed by the stepper motors, because the 
energy source of the robot is inside the spherical shell. 
Assuming    and    are the angular velocities of stepper 
motors for shaft and pendulum, respectively. Then the cost 
function can be defined as follows: 
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We have the following relations for our spherical robot gears:  
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So the cost function can be written as: 
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Or we can define it as: 
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  By substituting the dimensionless relations we have: 
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where   ̂ is 
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and is the dimensionless cost function. In a similar way this 

function becomes: 
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      Now the method of DP can be applied to the path planning 

problem. 

IV. SIMULATION RESULTS 

In this section, some simulations through MATLAB, 
including the optimal trajectories found by DP, are presented. 

Assuming the spherical robot rolls without slipping on a 

plane and the initial and final states of the robot to be    
(        )  (     ), and    (     )  (   ),respectively 

(there is no constraint on the value of   ). Radius of the robot 

is assumed to be       , the specified final time is assumed 

to be        ,      (a ten-stage process) and the 

admissible values of the state and control variables are 

constrained as follows: 
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To limit the required number of calculations, and thereby 

make computational procedure feasible, the allowable state 

and control values must be quantized. Here, it will be assumed 

that the quantized values are as follows: 

 ( )                

 ( )                

 ( )                     
 ( )                      
 ̇( )                  

 ̇( )                  
The simulated optimal trajectories through the DP process 

are as follows. The approximated trajectory is obtained by 
neglecting the computational “grid” point error. The exact 
trajectory is obtained by giving the sequence of optimal 
controls to the system. 

 

Fig. 1. Approximated trajectory obtained by DP 
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Fig. 2. Exact trajectory obtained by DP 
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Fig. 3. Comparison between exact and approximated trajectories 

 
It is obvious that the straight line is not the optimal path 

between the two points because the initial holonomy angle of 
the robot is important and the cost function should be 
minimized.  

An important point here is that once the DP process reached 
some optimal paths, the obtained table could be used in any 
environment even the robot hasn’t experienced them. It means 
that giving any initial and final positions, the robot can follow 
an optimal path to reach the final position according to DP 
table. 

V. CONCLUSION 

Path planning of a 2-DOFs pendulum-driven spherical 
mobile robot is considered using Bellman’s Dynamic 
Programming (DP). The robot finds a trajectory with minimum 
energy consumption through DP. The proposed approach path 
planning of the robot through DP has a big advantage: there is 
no need to design a control system because DP yields optimal 
control inputs in closed loop or feedback form i.e. after 
completing DP table, for every state in the admissible region 
the optimal control inputs are known and the robot can move 
toward the final position. For simulation, the forward kinematic 
model of robot is used for finding its new position and pose 
after each motion. Results show that the proposed approach is 
capable of adopting an optimal path towards a predefined goal 
point from any given position/orientation in the admissible 
region. 
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