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Abstract—Channel adaptive transmission requires knowledge
of channel state information at the transmitter. In temporally
correlated MIMO channels, the correlation can be utilized to
reduce feedback overhead and improve performance. In this pa-
per, Compressed Sensing (CS) methods and rotative quantization
are used to compress and feedback channel state information for
MIMO systems as an extension work of [1]. Using simulation, it
is shown that the CS based method reduces feedback overhead
while delivering the same performance as the direct quantization
scheme.

I. INTRODUCTION

In modern wireless communications multiple-input
multiple-output (MIMO) systems are integrated due to their
advantage in improving performance with respect to many
performance metrics. One of the advantages is the ability
to transmit multiple streams using spatial multiplexing [2].
However, one needs channel state information (CSI) at the
transmitter in order to get optimal system performance [3].
In frequency division duplexing (FDD) MIMO a dedicated
feedback channel of limited capacity is usually assumed.
Several limited feedback strategies are proposed using
codebooks which are both known to the transmitter and
receiver [4] - [9].

Temporaly correlation of wireless channels can be used to
reduce the feedback requirement in limited feedback systems.
One technique to reduce the feedback requirement in tempo-
rally correlated channels is to quantize the rotative change of
singular vectors. For instance, differential rotation feedback is
proposed in [4].

In [1], scalar quantization using adaptive range is used
to utilize the temporal correlation. This paper, extends the
work done in [1] by introducing the concept of Compressed
sensing (CS) for rotative quantization methods. The near-
sparse nature of the rotation matrices is used to reduce the
feedback requirement by using compressed sensing based
coding and decoding.

Recently questions like, why go to so much effort to acquire
all the data when most of what we get will be thrown away?
Can we not just directly measure the part that will not end
up being thrown away?, that was paused by Donoho [13]
and others, triggered a new way of sampling or sensing
called compact ("compressed”) sensing (CS). In compressed
sensing (CS) the task is to estimate or recover a sparse or
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compressible vector x € R™ from a measurement vector
y € RM. These are related through the linear transform
y = Ax. Here, x is a sparse vector and M < N. In the
seminal papers [13] and [15], x is estimated from y, by
the algorithm: min ||x||op such that y = Ax, This is a non
convex NP-complete. The usual wisdom is to solve it using
approximation with min |[x|[; such that y = Ax, which is
a convex optimization problem [13] - [17]. One of the most
famous approaches is the [, -regularized least square or LASSO
and we used this eastimator as a recovery algorithm in this
paper.

The concept of applying compressed sensing for limited
(compressed) feedback of parameters of the channel is well
known [10]- [12]. In this paper though, we combine rotative
quantization and CS to reduce the feedback overhead in
temporally correlated MIMO channels.

This paper is organized as follows. First we give the MIMO
system model that we work with in Section II. In Section
III, we review the concept of rotative quantization. In Section
IV, it is shown how rotative quantization can be combined
with CS to reduce the feedback overhead. Then in section
V, the performance of the proposed method is shown using
simulations. The last section gives conclusion and future work.

II. SYSTEM MODEL

Considering a frequency division duplex (FDD) MIMO
system consisting of V; transmit and NV, receive antennas we
assume that the channel is a flat-fading, temporally correllated
channel denoted by a matrix H[n] € CN-*Ne where n
indicates a channel feedback time index with block fading as-
sumed during the feedback interval. Applying Singular Value
Decompostion (SVD) of H[n] gives H[n] = U[n|X[n]VH [n],
where U € CV*" and V € CNt*" are unitary matrices and
3 € C"*" is a diagonal matrix consisting of = min(NVy, N,.)
singular values.

In the presense of perfect channel state information (CSI)
a MIMO system model can be given by the equation

y = U [n]H[n|V[n)x + U7 [n)n (IL1)

where x € C™! is transmitted vector, V[n] is used as
precoder at the transmitter, U [n] is used as decoder at the
reciver, n € CV*1 denotes a noise vector whose entries are



ii.d. and distributed according to CN'(0,1) and y € CN-*1
is the received vector.

In practice, partial channel state information is available at
the transmitter, hence we assume that only a quntized version
V[n] is available, Further, assuming a generalized receiver
Rin], (Il.1) becomes:

y = RY[n]H[n]V[n]x + U [n]n. (I1.2)

In this paper we consider two different alternatives for R[n].
Assuming a minimum mean square error (MMSE) approach
we get

mmzhﬂmvmﬂﬂva+mﬂrRHMvWﬂ.

Alternetively, a Mached Filter (MF) receiver gives
- H
R[n] = (H[n]V[n])".

The reciver estimates the channel from pilot symbols, com-
putes SVD, quantizes and then feedbacks V[n].

Further we assume a first-order Gauss-Markov process
to model the channel variation in a channel with temporal
correlation as used in [1] and [4] given by the equation

Hin] = pH[n — 1] + /1 — p?G|n]
where p is the temporal correlation and G[n] € CN-*Ne
denotes the innovation process having i.i.d. entries distributed
according to CA(0,1). p is given by p = Jo(27 f47), where
Jo(+) is the zero order Bessel function of the first kind, 7 is the
channel feedback interval, and f; is the Doppler frequency.

(IL.3)

III. ROTATION BASED QUANTIZATION

In the temporally correlated environment we apply a
rotation based limited feedback system for a Rayleigh flat
fading MIMO channels as in [4]. The differential rotation of
the precoder matrix at a time index n, V[n], compared to the
one at a previouse time instant,V[n — 1] is quantized. This
has advantage of reducing the feedback overhead.

The precoder matrix V[n] can be represented equivalently as
Vin] = T[n)Iy, x» (IIL.1)

where, T[n] € CNe*Nt is a matrix containing all singular
vectors and I[n] is a matrix composed of the first m columns
of the identity matrix Iy, n,. As in [1] we assume that both

reciver and transmitter has a common estimate T[n] of T|[n].
Then we can define a rotation matrix

O [n] = T [n — 1]V[n] (I11.2)

where, @ [n] € CN+*". A quantized version ©[n] is then
fedback to the transmitter where an estimate

Vin] = T[n — 1]©[n] (II1.3)

can be reconstracted.

In order to quantize © [n] various methods can be used.
Vector quantization of this matrix is used in [4], parametriza-
tion using Givens rotations is also used in [1]. Before in-
troducing our new method, we present a baseline approach

for comparison. This is Algorithm 1 below, where © [n] is
vectorized and vector quantization of the resulting vector is
used. The codebook used for vector quantization consists of
vectors uniformly distributed in a N; X r dimensional unit
hypersphere. We have assumed that the feedback channel is
error free and the only inaccuracy comes from quantization
error.

Algorithm 1 Rotative Quantization feedback using CS for
temporally correlated MIMO channels

1. Initialization: (both transmitter and receiver)
Set T[O] =Inxn-

2. For each time index n > 1:
Receiver:

Obtain © [n] = T#[n —1]V[n].
Update T[n].

Perform vector quantization of ©|n].

Transmitter: Re-construct @[n] from received parameters.
Obtain the estimate of the current singularvector matrix using

Vin] = T[n —1]O]n).

To simplify the analysis we assume N, = N, = N, for the
rest of the paper.

IV. QUANTIZATION USING COMPRESSED SENSING

We will now modify Algorithm 1 above by using CS instead
of direct quantization of (:)[n} The approach is summarized in
Algorithm 2 and Fig.1 below. The first step is to arrange the
entries of ® [n] in a column vector x. We denote this operator
by x = vec(© [n]). Assuming strong correlation, ©[n] will be
close to diagonal and x[n] sparse. Next, we apply a random
fat matrix A, which is known both to the transmitter and the
reciver, to get another vector y = Ax, which has much less
dimension than the orignal vector x. A quantized version y is
sent through the feedback channel. The receiver reconstructs
X from the recived vector ¥ and the matrix A using LASSO:

% = argmin ||y — Ax|[3 + |[x|]1. (IV.1)
Then we apply the reverse process of the vectorization,
unvec(x), and we get O[n], which is an estimate of @ [n].

Finally, since we are interested in estimating V|[n], we can
derive it from V[n] = T[n — 1]O[n].

V. RESULTS

In order to verify the proposed algorithm, we consider a
2 x 2 MIMO channel with a temporal correlation of 0.98.
Spatial streams are assumed to be transmitted with equal
power allocation in the 2 x 2 MIMO system. Unitary precoding
is applied based on the feedback, and matched filter or MMSE
equalizers are applied at the receiver.



Algorithm 2 Rotative Quantization feedback using CS for
temporally correlated MIMO channels

For each time index n > 1:

Receiver:

Vectorize © [n] obtained from algorithm 1, x = vec(® [n]).
CS encoding y = Ax.

Quantize y and feedback the resulting y.

Transmitter:
Recover using LASSO, % = argmin ||y — Ax||3 + ||x||1.
X

Unvectorize X to get @[nj .
Obtain V[n] = T[n — 1]©[n] (as in algorithm 1).
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Fig. 1. Algorithm 2

Three methods are compared in the simulations in Fig.3,
Fig.2 and Fig.4. The first is the perfect channel state infor-
mation scenario. The second is using Algorithm 1. The third
method is using Algorithm 2.

In Fig.3, and Fig.2, sum rates are compared against signal-
to-noise-ratio (SNR); result using both matched filter and
MMSE receivers is shown. In the second method, a total
feedback bits B = 10 are used. On the other hand, the CS
method uses half the number of bits, B = 5. We can observe
that the performance of the CS method is almost equal to that
of the method without using CS while saving half the number
of bits.

The advantage of CS can also be confirmed from the result
in Fig.4, where the bit-error-rate is plotted but in this case
the CS and without CS using same number of bits. In this
case, we observe that the CS method has a better bit error
rate performance. These two figures demonstrate the clear
advantage of using CS in feedback of singular vectors in
rotative based method.

VI. CONCLUSION

In this paper, the concept of compressed sensing (CS) is
applied to limited feedback in temporally correlated MIMO
channels. The near-sparse nature of the rotation matrices is uti-
lized to combine techniques from CS with rotative quantization
for reducing feedback overhead. Simulations show that the use
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of CS reduces feedback overhead significantly while delivering
the same performance. On the other hand, CS based feedback
improves performance as compared to direct quantization for
the same feedback overhead. CS based limited feedback is
in general a promising method that can be applied in various
scenarios taking advantage of the sparse nature of the elements
to be quantized.
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