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Abstract— Energy Detection is one of the proposed solutions 

enabling opportunistic spectrum access. This article revisits the 

problem of energy detection of an unknown deterministic signal 

over α-µ generalized fading environments. A closed form series 

based solution of the probability of detection is derived using one 

of the canonical forms of the generalized Marcum ��function 

with arbitrary real order. Our new expression represents truly 

unification and generalization of all previous work covering: 

Nakagami-m with arbitrary non integer fading severity, Weibull, 

Gamma distributions in addition to smooth interpolation among 

them. Moreover, it directly reflects the environment physical 

parameters and clearly demonstrates their influence. 

Index Terms—Energy Detectors, Blind Detector, Generalized 

Marcum Q-Function, Opportunistic Spectrum Access. 

I.  INTRODUCTION 

nergy Detection is the simplest  method that provides 

moderate performance. It simply measures the energy 

received on a specific frequency band during an observation 

interval and declares a white space �� if the measured energy 

is less than a properly set decision threshold. Otherwise, it 

asserts  �� . Obviously, increasing the decision threshold 

simultaneously reduces both false alarm and detection 

probabilities (��  and �	 respectively) and vice versa  [1] [2]. 

  

Since the first approximation to the statistics of the energy 

detector output introduced by Urkowitz  [3], several efforts 

have been exerted to incorporate the effect of different fading 

models on the evaluation of average probability of 

detection [4] to  [8]. Clearly, utilizing different fading models 

in conjunction with different integral evaluation approaches 

resulted in a wide variety of expressions each of which is 

applicable only to a specific fading model. Additionally, to 

render their solutions in closed form; authors imposed 

limitations on system and fading parameters that eventually 

compromised their effectiveness. Furthermore, results based 

on series expansions are not guaranteed to converge for all 

conditions. More importantly, some cases are encountered for 

which no common distributions including Nakagami-m, seem 

to adequately fit experimental data  [9].  

 

Recently, 
-� distribution was proposed to explore the 

nonlinearity of the propagation medium resulting from non-

homogeneous diffuse scattering  [9] [10]. Such phenomenon 

has been neglected in the derivation of previous fading 

models. Being a new formulation of the Stacy Generalized 

Gamma Distribution  [11], the proposed distribution includes 

as special cases, other important distributions such as Gamma, 

Nakagami-m, and Weibull. It also represents an appropriate 

generalization of such distributions in addition to interpolation 

among them  [9]. 

  

In this paper, we derived a generalized closed form 

expression describing the effect of fading on the probability of 

detection providing great flexibility inherited from the α-µ 

model. Up to the authors’ knowledge, the new expression for 

the first time provides a unified solution bridging all known 

fading models in addition to interpolation among them. 

Furthermore, during its derivation, the convergence problem 

was investigated and conformance to one of the well known 

convergence theorems is checked  [12].  

 

In order to demonstrate both generality and effectiveness of 

the new expression, different plots of Receiver Operating 

Characteristics (ROC) representing various known fading 

situations are produced. Benefitting from the generality of this 

unification, the effect of various fading and system parameters 

can now be best demonstrated by simultaneous plots of ROC 

with different conditions.  

 

The remainder of this article is organized as follows: Blind 
Energy Detector model and performance is briefly discussed in 
section  II. Section  III describes how the α-µ fading model maps 
to conventional models and how the probability distribution 
function of the signal to noise ratio is derived. In section  IV the 
new generalized average probability of detection based on the 
specified fading model is used to study the effect of different 
model parameters supported with careful explanation. The new 
expression is further simplified in Section  V for the special 
cases of Nakagami-m and Rayleigh and a consolidating 
conclusion is given in Section  VI. Finally, the derivation of the 
new expression is given in Appendix A showing its 
convergence justification. 

II. PERFORMANCE OF ENERGY DETECTORS 

Consider the block diagram shown in Figure 1, where the 

E



received signal ��� is pre-filtered to a bandwidth of �  Hz, 

squared and accumulated over the observation time � Secs 

before testing against a fixed predefined threshold �. 

 
Figure 1: Block Diagram of Energy Detector 

 

Consequently, the receiver decision variable  �  takes one of 

two states depending on signal presence as:  

 ��� � ����� �� ����� ������ ����  ���� �� !��"���# $ (1)

where ����  is the transmitted signal,  ���  is the received 

signal, ���� is the Additive White Gaussian Noise (AWGN) 

and � is the amplitude gain of the channel  [3] [4]. 

 

Obviously, the received signal envelope is modulated by the 

random fading amplitude  � , having mean-square value Ω � �&'''  and probability density function (p.d.f)  ()��� . 

Moreover, the received signal is perturbed by AWGN that is 

assumed to be statistically independent of the fading 

amplitude  � , and is characterized by a one-sided power 

spectral density  *� Watts/Hz. Equivalently, the received 

instantaneous signal power is modulated by   �& and  

consequently, the instantaneous Signal-to-Noise power Ratio 

(SNR) can be expressed as: + � |�|& -./0  with an average 

 +1 � 2 -./0 where, 34 is the signal energy accumulated over the 

observation period. 

 

  The p.d.f. of + can be derived by a change of variables as 

described in [13, 2.3] and is shown as: 

 

(5�+� � () 67
Ω++1 8

27 +1Ω+
 (2).

It is now commonly known that the p.d.f. of the decision 

variable �can be described by Central and Non-Central Chi 

Square distributions for ��  and ��respectively with good 

accuracy. For both distributions the Degree Of Freedom 

(DOF) of these distributions are shown to be  D � EF&  that in 

general is not restricted to integer values  [3]. Consequently, 

for a fixed threshold λ  the conditional probability of false 

alarm ��  and detection �	  for a certain value of +  can be 

expressed as  [7]:  

 �� � �H� I �|��J � KLM,OPQK�M�                            (3) 

 �	 � �H� I �|��J � RMST2+, √�V                     (4) 

where, RM��, W� � X YZ[Z\]  �^_P`aPP bM^����#c�  , bM�. � is the 

m
th

 order Modified Bessel function [14, 10.25.2] and e��, W� 

is the Incomplete Gamma function [14, 10.25.2]. 

  

 Fading clearly affects signal to noise ratio +  that in turn 

affects �	  and hence must be averaged over all of its possible 

values such that: 

 �	[f � g �#�+� c
�

(5�+�  #+ (5).

III. PROBABILITY OF DETECTION OVER 
-� FADING CHANNEL 

A. Relationship of α-µ to other existing Fading Distributions 

For a fading signal with envelope h, an arbitrary parameter 

α > 0, and a i -root mean value  ĥ � T3�hk�l
 , the α-µ 

probability density function (m�h� can be written as: 

 (m�h� � 
 �ne���  h
n^�ĥ
n   �^nLmm̂Q
 (6).

where � I 0 is the inverse of the normalized variance of   hk , 

i.e., � � -P�pl�q�pl�  and 3�. �  and r�. �  are the expectation and 

variance operators respectively  [9].  

 

Weibull distribution can be obtained from the α-µ 

distribution by setting  � � 1 , and  α � u . Negative 

Exponential distribution can result by setting  u � 1 , while 

Rayleigh distribution can be produced by setting  u �  2 . 

Furthermore, Nakagami-m distribution can be obtained from 

the 
-�  distribution by setting i � 2 and � � D . From the 

Nakagami-m distribution, setting  D �  1 , again produces 

Rayleigh distribution and the one-sided Gaussian distribution 

can be obtained by setting D � 1/2. Figure 2 schematically 

shows the relations of α-µ to other distributions highlighting 

its apparent flexibility and ability to cover a vast range of 

fading situations. 
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Figure 2: Relations of α-µ to other Distributions 

In order to illustrate the effectiveness of utilizing the α-µ 

fading distribution, the new expression will be plotted using 

carefully selected parameter sets. The list shown in Table 1 in 

conjunction with a general non integer parameter  D , spans 

various known fading situations in addition to interpolation 
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among them. For instance, Nakagami-m distribution 

interpolates between One-Sided Gaussian and Rayleigh while 

Weibull extends this interpolation to Exponential and finally 

the Gamma distribution covers the rest of the range. 

 

Table 1: Range of Test Cases 

Fading Distribution   α μ 

Exp.  1 1 

Weibull (Between Rayleigh-Exp. K=1.5) 1.5 1 

Rayleigh 2 1 

Nak-m(One Sided Gaussian m=1/2) 2 0.5 

Nak-m (Chi m=5)  2 5 

Gamma (Chi –Square a=5) 5 1 

B. P.D.F. of Signal to Noise Ratio with α-µ Fading Model 

Clearly, in the case of the α-µ fading model the envelope 

distribution  (m�h; 
, �, h1�  can be expressed as in (6).  

Consequently, (5�+� can be obtained by applying a change of 

variables in (2) leading to:  

 (5�+� � 
2  �n  e���  +

&n^� 
+1
&n e^nL55xQ
P  (7).

The resulting SNR distribution can be observed to follow 

the α-µ distribution with modified arguments as  (5 L+; 
& , �, +1Q  where +1 � h1 -./0. 
IV. PROBABILITY OF DETECTION OVER 
-�  FADING 

CHANNEL 

Since, (4) represents the conditional probability of detection 

given a certain SNR, it is then necessary to average it using (5) 

with the p.d.f. given in (7). 

 

Following the derivation in Appendix A, the generalized 

average probability of detection �'	 will take the form: 

�'# �  
2  �ne���   +y
&n
√z  {
n^�&
�2|��}~��& ^� 

� e LD  �, �2Qe�D  ��  {��! ��,}},� �$� �
z+y
&�

} {� $  | ∆ 6{, 1 � L�  
 �2 Q8∆�z, 0� �     �8�c
���  

where, ��,�M,� L$|�WQ  is the Meijer-G function [14,16.17.1], ∆�k, a� � �� , �~�� . . , �~�^��   ,  { and z are integers such that  �} � 
&.  

 

One can demonstrate the influence of different fading 

parameters on the ROC by simultaneously plotting results 

representing different combinations of these parameters. 

Figure 3 shows one of such graphs for a sample average SNR 

of 9 dB and DOF corresponding to D � 5 in addition to the 

AWGN case for comparison. 

 
Figure 3: ROC for different fading situations 

As expected, the worst case fading occurred with one sided 

Gaussian corresponding to Nakagami-m severity factor of 0.5 

in addition to the exponential distribution. In both cases, lower 

envelope amplitudes occur more frequent than higher ones. 

The close match between the two cases in conjunction with 

being worst cases suggest using Exponential distribution as a 

performance bound benefiting from its mathematical 

tractability. On the other hand, situations that can be 

approximated with Rayleigh and Chi-Square corresponding to 

lower severity factors clearly show better performance while 

the best performance is associated with AWGN case. 

A. Effect of Environment Non- Linearity parameter α 

The nonlinearity parameter α plays an important role in 

shaping the fading p.d.f. as it solely determines the exponent 

term. Obviously, increasing α enhances the tail under the p.d.f. 

and hence for a given fixed threshold it increases the detection 

probability. This fact is illustrated in Figure 4 showing that 

increasing this factor considerably enhances the ROC by 

reducing the Area Under the Curve (AUC).  

  
Figure 4: Effect of Non-Linearity Parameter α 



B. Effect of Number of multipath clusters µ 

Physically the parameter µ represents the number of 

multipath clusters contributing to the received signal envelope. 

Increasing this factor indicates more diversity in the received 

multipath clusters and consequently will enhance the 

probability of detection as shown in Figure 5.  

 

 
Figure 5: Effect of number of multipath clusters µ 

C. Effect of observation time 

As mentioned earlier, the integration time in conjunction 

with the filter bandwidth solely determines the DOF of both �0 and �1 distributions  [3]. To shed the light on the effect of 

this parameter on ROC plots, several plots corresponding to 

values of m ranging from 1.5 to 10 are shown in Figure 6. 

Clearly, it has minor effect on ROC and this fact can be best 

illustrated as follows: For a given bandwidth W, increasing the 

integration period T is equivalent to increasing m by the same 

factor. In other words, in reference to [13,4.71]  ��  can be 

rewritten in terms of Marcum Q function  as:  �� � RMS0, √�V 
Now it is clear that m will influence both ��  and �	  by 

stretching the x-axis of both �0, �1 p.d.f. Consequently, the 

pairs ��  and �	  are almost kept unaffected and just occur on 

different threshold.  

 
Figure 6: Effect of Integration Time for fixed bandwidth  

V. EXAMPLE OF SPECIAL CASES 

Section | III.A indicated that the α-µ distribution reduces to 

other simpler fading models by setting α and µ to a specific 

values. For instance it can be reduced to Nakagami-m 

distribution by letting i � 2 with µ taking the value of the 

Nakagami parameter. Consequently,(8) can be simplified for 

this case as shown in the following analysis:  �'	,/��
� �       �ne���   +yn��  1�! � e LD  �,

�2Qe�D  �� ���,��,� �$��+y�� ∆�1,1 � ��  ���∆�1,0� �c
���  

�'	,/�� � �       �ne���   +yn��  1�! � e LD  �,
�2Qe�D  �� �e��  �� � +y+y  ��

n~�c
���  

�'	,/�� � � �+y  ��n�L +y+y  �Q��! � e LD  �, �2Qe�D  �� e��  ��e��� �c
���  (9). 

Eq. (9) can be simplified to (10) using the fact that e LD  �, �&Q � e�D  �� � � LD  �, �&Q  [14, 8.2.3] where � LD  �, �&Q 
is the lower incomplete gamma [14, 8.2.1] showing an exact 

match to the result given in  [8].   

 

�'	,/�� � 1 �� 1�!  � LD  �,
�2Qe�D  �� +y��n�+y  ���~n

c
���

e��  ��e���       (10). 

 

Additionally, as the Rayleigh distribution is a special case 

of Nagami-m, further simplification to Rayleigh case can be 

deduced by setting µ=1 to lead to: 

 �'	,p�� �  � 1+y  1�� � +y+y  1�
� � e LD  �, �2Qe�D  �� �c

���  (11).

VI. CONCLUSION 

In this work, the performance of Energy Detectors was 
revisited. A generalized single expression covering a wide 
range of fading models was derived utilizing α-µ generalized 
fading model. The new expression relaxed the strict limitation 
of integer system parameters imposed by previous work in 
addition to the inclusion of new models like Weibull and 
Gamma as special cases. Moreover, its effectiveness was 
demonstrated by plotting several ROC’s for the commonly 
known fading distributions. For the first time, the new 
expression incorporated the physical environment parameters 
including nonlinearity and clustering. For fixed average SNR 
the shape of fading distribution was shown to greatly affect the 
performance. More fading diversity and nonlinearity factor 
enhance the AUC while increasing the integration period had 
minimum influence on this measure. 

  



Appendix A 

Evaluation of �	[f 

Using the canonical form expansion of Marcum Q function 
in [13, 4.74] combined with [14, 8.4.10] the conditional 
probability of detection can be shown to take the form: 

 Q�ST2γ, √λV � �^5�+�e LD  �, �2Q�! e�D  ��
c
���  (A.1) 

Substituting (7) and (A.1) in (5) results in: 

�	[f � g ��^5�+�e LD  �, �2Q�! e�D  ��
c
���   �
2 �n+
&n^�e���+y
&n e^n�55¡�
P  #+ c

�
  (A.2) 

letting, ¢ �      
P n£K�n�   5¡
P£ , "��+� �  KLM~�,OPQ�! K�M~�� +�~
Pn^�e^nL¤¤¡Q

Pe^5 , 

the integral can be put in the following form: 

  �	[f � ¢ g $�"��+�c
���

$ #+ c
�

 (A.3) 

Noting that the summand "��+� ¥  0 over the entire 
positive real domain and for all  � ¥ 0 , then the monotone 
convergence theorem  [12] (Theorem 5-21) can be invoked. 
According to this theorem, term by term integration is 
permitted if either side converges. This fact can be 
mathematically stated as:  

 g $� "��+�c
���

$ #+ c
�

� �g $"��+�$#+ c
�

c
���  (A.4) 

In our case the LHS of (A.4) permanently converges to the 
average probability of detection as it originated from the 
expansion of Marcum Q function. Consequently, �	[f can be 
expressed as:  

�	[f � ¢�  e LD  �, �2Q�!  e�D  �� g +�~
&n^�e^n�55¡�
Pe^5#+ c
�

c
���

 (A.5) 

It can be observed that the integral 

In=X γn+


2
µ-1e

-µLγ
γyQ


2

e-γdγ
 ∞

0
 is just a special case of the Laplace 

Transform ¦ §γn+
2µ-1e
-µLγ

γyQ


2 ¨ for s =1. As a result and according 

to [15, 2.2.1-22] if  
&  is rational number 
�}  the integral is 

expressed as: 

b� � √z  {�~
n^�&�2|��}~��& ^� ��,}},� 6$�Wz�
} {�© ∆�{, �ª�∆�z, 0� 8 (A.6)

where ª � �  
& � � 1, W � n
5¡
P , ∆�z, �� � [} , [~�} . . , [~}^�}  and   

��,�M,� L$|�WQ  is the Meijer-G function [14, 16.17.1].  

Finally, the generalized form of the average probability of 
detection is as stated in (8). 
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