
Abstract—— Spectrum sensing has been identified as a key 
enabling functionality to ensure that cognitive radios would not 
interfere with the primary users, by reliably detecting primary 
user signal. In this paper, the primary user signal is wireless 
microphone (WM) signal. The power of the WM signal is 
highly concentrated in the frequency domain. Due to this 
property, we focus on spectrum sensing in the frequency 
domain using cyclostationary detection (CD), which is robust 
against white Gaussian noise (WGN) and large degradation in 
performance under low signal-to-noise ratio (SNR) 
environment. We also examine the windowing effect on 
cyclostationary-based detector for a given sensing time and 
obtain the optimum thresholds in the region satisfying the 
probability of false alarm constraint. Furthermore, very low 
sensing time = 170s has been achieved at low SNR=-10dB.  In 
addition an analytical expression for Cyclic Spectral Density 
(CSD) of the WM signal is derived. 
 
Index Terms- Spectrum Sensing, Cyclostationary Detection (CD), 
FFT Accumulation Method (FAM), Spectral Correlation 
Density, Wireless Microphone, Cognitive Radio. 

I. INTRODUCTION 
Nowadays, Cognitive Radio (CR) proves to be a tempting 

solution to the spectral congestion problem by introducing 
opportunistic usage of the frequency bands that are not 
heavily occupied by licensed users [1-3]. As a matter of fact, 
recent measurements by Federal Communications 
Commission (FCC) have shown that 70% of the allocated 
spectrum in US is not utilized. Furthermore, the allocated 
spectrum experiences low utilization [4]. Since cognitive 
radios are considered lower priority or secondary users (SUs) 
of spectrum allocated to a primary user (PU), their 
fundamental requirement is to avoid interference to potential 
primary users. IEEE 802.22 standard is known as cognitive 
radio standard because of the cognitive features it contains.  
One of the most distinctive features of the IEEE 802.22 
standard is its spectrum sensing requirement [5]. IEEE 
802.22 based wireless regional area network (WRAN) 
devices sense TV channels and identify transmission 
opportunities. Spectrum sensing (SS) aims to detect the 
presence or absence of a signal from a PU; which are TV or 
FM WM. The main challenge in SS is to quickly detect the 
signal in a very low SNR environment, and with high 
reliability. 
    The algorithms used for SS can be broadly classified into 
three types: Energy Detector (ED), Matched Filter Detector 
(MFD) and Cyclostationary Feature Detector (CFD) 
 [6] [7] [8]. ED, where the received signal energy in a 
frequency band of interest is compared against a threshold to 
detect the presence of a primary, is the simplest and most 
popular detector  [9] [10] [11]. The MFD correlates the 
received signal with a copy of the transmitted signal. 

Although it is computationally simple, it assumes knowledge 
of the primary’s signal, which may not be feasible in general 
 [8] [12].  
    Cyclostationary feature detectors rely on the second order 
cyclostationary characteristics inherent in all communication 
signals, i.e., pilot sequences, carrier tones, etc  [13]  [14]; in 
addition it has to detect the wireless microphones and DVB-
T as well  [15] [16]. The significant advantages of 
cyclostationary signal analysis when compared with 
alternative approaches lie in the wealth of information 
which may be represented by the spectral correlation of a 
signal. Although the presence or absence of a given signal 
may be indicated by the specific cyclostationary features 
detected, these features may also be used to determine key 
signal properties. Furthermore; the cyclostationarity based 
detection algorithms can differentiate noise from primary 
users’ signals. This is a result of the fact that noise is wide-
sense stationary (WSS) with no correlation while modulated 
signals are cyclostationary with spectral correlation due to 
the redundancy of signal periodicities  [17]. Spectrum sensing 
using the Spectral Correlation Density (SCD) function and its 
application to IEEE 802.22 WRAN is discussed in  [18]. 
Cyclostationarity features as a detection method for primary 
user transmissions has been investigated in  [19]. 
Cyclostationary features are caused by the periodicity in the 
signal or in its statistics like mean and autocorrelation or they 
can be intentionally induced to assist spectrum sensing 
 [20] [21].  
    Statistical spectral analysis can be described as the 
decomposition of a function into sinusoidal waveforms 
called spectral components; and to represent the function as a 
sum of weighted spectral components  [22]. Cyclic spectral 
analysis deals with second order transformations of a 
function and its spectral representation. In the analysis of 
cyclostationary signals, two key functions are typically 
utilized. Time domain analysis of cyclostationary signals is 
performed using the Cyclic Autocorrelation Function 
(CAF); the frequency domain equivalent of the CAF is its 
Fourier transform, the Spectral Correlation Density (SCD) 
or Cyclic Spectral Density (CSD); for zero cyclic frequency 
these reduce to the conventional autocorrelation function 
and power spectral density (PSD) function. Successful 
exploitation of cyclostationarity typically requires 
knowledge of a cycle frequency. Cycle frequencies are the 
Fourier frequencies resulting from the Fourier-series 
representation of the almost-periodic moment or cumulant 
function  [23]. Examples of exploitation of second-order 
cyclostationarity for detection and modulation classification 
are given in  [24] [25], in which knowledge of cycle 
frequencies is used to compute decision statistics. More 
recently, higher order cyclostationarity  [24] has been 
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applied to the modulation classification problem  [25] [26]. 
The various proposed algorithms require, in one way or 
another, detailed knowledge of the higher order moments 
and cumulants of the cyclostationary signals of interest  [27]. 
     The spectral correlation function is calculated based on 
the FFT Accumulation Method (FAM)  [28]; which is one of 
the methods under time-smoothing classification which has 
good efficiency, computation wise. There are parameters 
involved that are used to trade-off resolution, reliability and 
of course computation reduction  [29]. 

The rest of this paper is organized as follow. The basic 
concepts of cyclostationary detection model, the 
cyclostationary characteristics of wireless microphone 
signals , and the FFT accumulation method are discussed in 
section II. Section III presents the proposed wireless 
microphone detector. Simulation results are shown in 
section IV. Section V contains the conclusions.    

II. BASIC CONCEPTS  
Two basic concepts are reviewed in this section as 

follow: 

A. Cyclostationary Characteristics of Wireless Microphone 
(WM) Signals 
Most of the wireless microphone devices use analog 

frequency modulation (FM) and the signal bandwidth is less 
than 200 kHz. Let m(t) be the voice signal, then the 
transmitted FM signal x(t) can be generated by 
(ݐ)ிெݔ = ߨ2) ݏܿܣ ݂ݐ + ݇ߨ2 ∫ ݉(߬)݀߬)௧

                      (1) 
where ܣ is the carrier amplitude  [25]. The term ݂  is the 
carrier frequency and the constant ݇ is the sensitivity of the 
modulator. Also it could be in simplified form: 
(ݐ)ݔ = ߨ2) ݏܿܣ ݂ݐ  (2)                                          ((ݐ)߮+

where ߮(ݐ) is the phase of FM signal.  
Cyclostationary Feature could be extracted from Cyclic 
Spectral Density (CSD) መܵ௫ఈ(݂)  of FM WM signal ; which is 
the F.T of Cyclic Auto-Correlation (CAF) function ܴ௫ఈ(߬).  
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where x , y are jointly Wide Sense Stationary (WSS) 
Gaussian random variables, ௫݂(௧భ),௫(௧మ)  is the 2nd order (ݕ,ݔ)
probability density function (pdf) of x(t)  and E{.}is the 
expectation function. 
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After some calculations, we get that     
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But the probability density function (pdf) is even for WSS 
Gaussian random process, which means that: 
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Using equation (3) we can get CAF Function: 
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The phases ଵ߮and ߮ଶare joint WSS Gaussian random 
variables; where the characteristic function of them  [30]: 
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߰  is the two dimensional Fourier transform (F.T) 
conversion of the pdf of ߮ଵand ߮ଶ. If the parameter ߱ =
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߰(1,1) is the joint characteristic function of ߮ଵand ߮ଶ . 
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݁ିଶగఈ௧ is the cyclic weighting factor. As multiplying the 
signal by it will shift the spectral contents by ±ߙ
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CSD is the F.T of cyclic auto-correlation function ܴ௫ఈ(߬) 
መܵ௫ఈ(݂) = ∫ ܴ௫ఈ(߬) ݁ିଶగబఛ ∞

ି∞ ݀߬                                     (17) 
 መܵ௫ఈ(݂) =

൞

ଵ
ସ

[Ψ୰ (݂ + ݂) + Ψ୰ (݂ − ݂)] ,             ݂݅ ߙ = 0
ଵ
ସ

[Ψ୰ (݂)]݁±ଶఝబ ߙ ݂݅                             , = ±2 ݂

݁ݏ݅ݓݎℎ݁ݐܱ                                            , 0

                       (18) 

where Ψ୰ is the F.T of ߰ .  
Thus, the cycle spectrum consists of only the two cycle 
frequencies ߙ = ±2 ݂ and the degenerate cycle frequencyߙ =
0. For  0= ߙ, cyclic autocorrelation is the conventional 
autocorrelation function. The conventional power spectral 
density (PSD) function is defined by the Fourier transform 
of the autocorrelation function,  መܵ௫(݂).  
    We focus on Spectral Correlation Function (SCF) feature 
resulting from carrier frequency embedded in the primary 
signals. By using (18), a FM WM signal at frequency fc was 



 

found at (f = ±fc, 0= ߙ) and (f = 0, ±2= ߙ fc), the latter two 
are the cyclostationary features of FM WM signal. 

B. FFT Accumulation Method (FAM) 
The FFT accumulation method (FAM)  [29] incorporates 

the idea of time smoothing using a Fourier transform to 
arrive at a computationally efficient digital implementation 
of the SCD function using N samples from a finite 
observation interval of duration t.  

FAM consists of capturing in a time length N a piece of 
the incoming signal xFM[n] which is the result of xFM (t) 
sampled at  fs . Estimation of the SCD is performed over this 
time length. This computation is performed iteratively over 
consecutive pieces in the time domain until acceptable 
results for a summation of several CSDs satisfy the 
application, in terms of time of computation and objective to 
meet  [14].The complex demodulates ܺே ቀ݊,݇ + ఊ

ଶ
ቁ  and 

ܺே∗ ቀ݊, ݇ − ఊ
ଶ
ቁ; where k is the discrete frequency and γ is 

the discrete cycle frequency over period N as illustrated in 
Fig.1. 
 

 
Figure 1. FAM block diagram 

 
   First, windowing of data is done using a window w(n) , 
which control the smoothing of the input data, and its 
general form is called Kaiser window and is defined by 
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where α = N/2, β is the shape parameter, and I0(β) is the 
zero – order modified Bessel function of the first kind. 
Different window types are obtained depending on the value 
of the parameter β; e.g., β=0 for rectangular window and   β 
= 1.33 for Bartlett, β = 3.86 for Hanning, β = 4.86 for 
Hamming, and β = 7.04 for Blackman  [24]. 
The complex demodulates of ܺே ቀ݊,݇ + ఊ

ଶ
ቁ  and ܺே∗ ቀ݊, ݇ −

ఊ
ଶ൯ are estimated by means of a sliding N’ point FFT, 
followed by a down-shift in frequency to the baseband. 
Here, ܺே ቀ݊, ݇ + ఊ

ଶ
ቁ is the (k + ఊ

ଶ
)th component of the N’ 

point FFT output (in baseband) of the nth N’ point window. 
That is, n is a time index corresponding to consecutive N’ 
point windows that are used in the FAM. The N’ point FFT 
is hopped over the data in blocks of K samples. The value of 
K is generally chosen to be N’/4 (i.e., 75% overlap between 
adjacent segments) as it allows for a good compromise 
between computational efficiency and minimizing cyclic 
leakage and aliasing. Next, the element-wise product 
between the sequences ܺே ቀ݊, ݇ + ఊ

ଶ
ቁ  and ܺே∗ ቀ݊,݇ − ఊ

ଶ
ቁ  is 

formed and time smoothed by a P-point second FFT. The 

value of N’ depends on the frequency resolution required, 
and is given by N’ = fs/f . The value of P is given by P = 
ೞ
∆ఊ

, where fs denotes sampling frequency and f and γ 
denote the frequency resolution and cyclic frequency 
resolution, respectively. A block diagram of the FAM 
implementation is shown in Fig.1. 

III. THE PROPOSED WIRELESS MICROPHONE DETECTOR   
Modulated signals (e.g., BPSK, FM, FSK, MSK, QAM, 

PAM) are characterized by built-in periodicity or 
cyclostationarity. The spectral correlation function contains 
phase and frequency information related to timing 
parameters in modulated signals (carrier frequencies, pulse 
rates, chipping rates in spread spectrum signaling, etc.). The 
proposed method is described as shown in Fig.2.  

 

 
Figure 2. Block diagram of the proposed detection method. 

 
There are four stages in this method. First the spectral 

correlation function of the received signal is generated by 
FAM method. After that the covariance matrix is searched 
in the second stage. Based on the searching results, a test 
static is calculated in the third stage, and then the detection 
decision is made in the last stage. 

The detection decision is generally described under the 
test of the following two hypotheses: 

 
H0: y[n] = g[n]  signal absent 
H1: y[n] = x[n] + g[n]   signal present 
 n=1, 2,........, N;       (20) 
 

where y[n] is received sampled signal, x[n] is transmitted 
sampled signal, g[n] is the additive white Gaussian Noise 
(AWGN) with zero mean and variance δ2, and N is the 
number of observation samples which depends on the 
sensing (detection) time and the signal bandwidth. 
Probability of detection, PD, defines, at the hypothesis H1 
(signal present), the probability of the sensing algorithm 
having detected the presence of the primary signal (P{Y> λ| 
H1}). Probability of false alarm, PFA, defines, at the 
hypothesis H0 (signal absent), the probability of the sensing 
algorithm claiming the presence of the primary signal (P{Y> 
λ| H0}). 
    The Spectral Auto-coherence (also called Spectral 
Coherence (SC)) of x(t) at cyclic frequency α and spectrum 
frequency f is defined as 
(݂)௫ఈܥ ≜ ௌೣഀ ()

ටௌೣబ(ାఈ ଶൗ )ௌೣబ(ିఈ ଶൗ )
                                         (21) 

Note that |ܥ௫ఈ(݂)| ∈ [0,1].The difference between the SCD 
and the SC is that the SC gives a normalized measure of 
cross-correlation between frequency shifted versions of x(t) 
at frequencies f−α/2 and f+α/2. It follows from the definition 
that the SC is identically zero for all α  0 if and only if x(t) 
contains no second order periodicity [18]. 
    In our proposed algorithm we search for the symmetry 
feature of the SCF considering that stationary noise exhibits 
no spectral correlation; so that this feature can be detected 
by analyzing a spectral correlation function  [18]; there are 
several test statistics that are using this feature  [31] [32].  
 



 

 
 

In light of this; our new test statistic is:  
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where ܵ௫(݂) is the conventional power spectral density 
(PSD) at 0 = ߙ at the center of SCD covariance matrix. Thus 
the decision rule depends on the calculation of SCD and its 
covariance matrix (CM).   
    The threshold Tth is first calculated when no signal is 
present, i.e., when y(t) = n(t). When the signal is white and 
there is a pure noise case, the power of the covariance 
matrix will be concentrated in the central elements and the 
off-central terms should be approximately flat, these 
elements will take the background noise level. However, 
when the wireless microphone signal is present the received 
signal is no longer white and the signal power will increase 
the sum of the magnitude of the central elements of the 
covariance matrix, so that the test statistic will exceed the 
threshold. One of our objectives is to find the optimum Tth 
value while satisfying the PFA = 10%.  

IV. SIMULATION RESULTS 
In order to evaluate the performance of the proposed 

spectral correlation based detection method, simulations 
were carried out in AWGN environment. We assume that 
the signal is FM  WM with a carrier frequency    fc = 2 MHz 
and a frequency deviation Δf.  The FM WM signal spectrum 
generally concentrates within a small frequency band which 
is less than 200 kHz from 6 MHz channel bandwidth. 
Moreover, there are apparent peaks contained in the CSDs of 
the various FM WM signal models (Silent, Soft speaker, and 
Loud speaker). In this paper thus far, we present results for 
15 kHz frequency deviations, representing soft speaker WM 
user  [33]. The received signal is sampled at 12MHz to 
N=2048 samples depending on the observation time, i.e. 
sensing time (170sec). And then one of three window 
shapes is applied to the received signal; which is the 
rectangle window (β=0), Hamming window (β=4.86), or 
Kaiser window (β=10). The spectral correlation function of 
FM wireless microphone signals is generated using the 
FAM method. Figure 3 shows the SCF function with 
rectangle window at different noise levels. In Fig. 3.a there 
are four clear peaks of the signal at (f=±fc, 0=ߙ) and 
(f=0, ±2=ߙfc). This is the defined cyclostationary feature of 
FM WM signal. As SNR decreases, the peak values of the 
FM WM signal are whelmed by the noise as shown in 
Fig.3.b where the SNR = -4 dB. It is hard to detect the 
unique cyclic frequency because the background noise 
increase and the visibility of peaks and intersection lines 
decreases. At no signal case as shown in Fig. 3.c all noise 
power is concentrated at the center of the covariance matrix 
at α=0, while the other areas at α  0 have approximately 
the same power level and there is no visible peaks at all 
because the signal has no second order periodicity, from that 
the optimum threshold value Tth  is found by measure the 
PFA versus  Tth values. The optimum Tth value is chosen to 
satisfy the PFA = 10% condition. As seen in Fig. 4, PFA = 
10% is achieved at Tth =0.018 for β =0, Tth =0.0207 for β 
=4.86, and Tth =0.02 for β =10. After the Tth value is 
estimated, the detector uses it in the decision process. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 3.   (a) CSD of the WM signal (noiseless), (b) CSD of WM signal at 
SNR=-4dB, (c) CSD of noise only, Soft Speaker. 

 
Finally, the probability of detection (PD) is calculated 

against different values of SNR. Figure 5 shows the 
probability of missed detection (PMD=1-PD) versus SNR 
using FAM method at PFA=10% and sensing time = 
170sec for different windows to the received signal. 

 
Figure 4.  PFA versus threshed values Tth. 

 
Figure 5. The probability of missed detection versus SNR for different 

windows applied to the received signal (PFA=10%) 
 
 
 



 

 
 

   It is clear from Fig. 5 that the rectangle window (β=0) 
achieves a PMD = 0.1 at SNR= -10dB, Hamming window 
(β=4.86) at SNR= -4.7dB and Kaiser window (β=10) at 
SNR= -3.5dB. So that the rectangular window at β =0 is 
achieved the smallest SNR=-10dB at PMD = 0.1 for sensing 
time =170sec. 

 

V. CONCLUSIONS  
In this paper we proposed and investigated techniques for 

detection of FM WM signals in a cognitive radio (CR) 
environment. First, an analytical expression for Cyclic 
Spectral Density (CSD) of the FM WM signal is derived; 
Second, a new detection decision method, depends on the 
SCF, was implemented and its threshold value was 
estimated for PFA=10%. Third, different windowing shapes 
were tested and the PMD for each shape was calculated. The 
rectangle window has the lowest SNR= -10dB at PMD =0.1 
and PFA=10% for a sensing time equals170sec. Moreover, 
there is a trade-off between the PMD and sensing time. By 
increasing the sensing time the frequency resolution and 
cyclic frequency resolution will increase, hence PD will 
increase and PMD will decrease as well.  So that it is 
expected to achieve lower SNR if the sensing time is 
increased. The advantage of the proposed detection scheme 
is that spectrum sensing sensitivity could be improved by 
choosing the suitable window shape that achieves the lowest 
SNR at the shortest sensing time and satisfies the PFA 
constraint; simulation results show that the rectangular 
window outperforms the other windows, even in the low 
SNR environment. Finally, using the proposed approach, 
WM signals can be detected quickly and reliably. 
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