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Abstract—Unlike Fourier basis which constitutes fixed sine and 
cosine waves; the Wavelet Transform has infinite basis functions. 
The choice of good basis is application dependent. Statistical 
parameters of the image are dynamic and differ from image to 
image. A moment vector of natural image will be different from the 
moment vector of synthetic image. Similarly the edges in natural 
image have structural variations and will be reflected in its 
subbands whereas synthetic images of thin lines, contours or 
geometric shapes have least correlation amongst the subbands. 
Therefore, good basis is a function of image statistical parameters. 
In this work an effort has been made to implement different 
classical Orthogonal, Bi-orthogonal and Symmetric wavelets on 
different images with a view to evaluate good wavelet basis for 
image compression. This paper discusses the effects of various 
wavelet functions on different images, zeros and retained energy 
after thresholding the wavelet coefficients of the decomposed 
image along with Peak Signal to Noise Ratio of the synthesized 
image. In order to achieve better compression system, the 
appropriate wavelet basis are required to be chosen depending upon 
type of the input image. 

Index terms —Wavelets, Optimal basis, image compression. 
 

I. INTRODUCTION 
Most of the sensory signals such as still images, video 

and voice generally contain significant amount of perceptual 
redundancy in their conical representation with respect to 
human perceptual system. Compression of Data is employed 
to decrease the redundancies in data representation and to 
enhance storage and transmission efficiency. Thus the 
improvement of good coding techniques will remain to be a 
design task for future communication systems and in 
multimedia applications. 

Decrease in data redundancy is typically realized by 
transforming data from one form to another. The popular 
practices used in the redundancy reduction step are 
likelihood of the data samples using typical model, 
transformation of the original data from spatial domain to 
frequency domain such as DWT or DCT [1-3]. In principle 
the steps theoretically yields more compact representation of 
the information in the original data set in terms of fewer 
coefficients. For lossless image compression, this step is 
entirely reversible. Transformation of data usually lessens 
entropy of the original data by removing the redundancies 
reduction in entropy is attained by dropping   non-substantial 
information  in  the   transformed   data   established   on  the 
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application criteria, usually accomplished by quantization 
technique. Since the entropy of the quantized data is fewer 
compared to original one, it can be represented by scarcer 
bits compared to original data set.  

Quality measures could be subjective based on human 
perception or can be objective defined by mathematical or 
statistical evaluation [4-6]. Zero tree count; monotone 
spectral ordering across subbands has been used as 
enactment criteria for wavelet filters in [7]. Although there is 
no single universally accepted measure of quality metric, yet 
there are different objective and subjective quality metrics in 
practice to evaluate data compression algorithms. 

This paper formulation is such that section 2 elaborates 
wavelet transform and overview of existing wavelet based 
compression techniques. Section 3 discusses the image 
quality metric used for evaluating experimental results. 
Section 4 highlights the experimental results obtained by 
different wavelet basis on various images and its analysis, 
followed by conclusion in section 5. 
 

II. WAVELET BASED COMPRESSION 
TECHNIQUES 

A. Wavelet Transforms 
Wavelet is a small wave whose energy is focused in time 

and these are functions created from one single function 
called mother wavelet by dilatations and translations in time 
domain [89]. If mother wavelet is designated by Ψ(t),the 
other wavelets Ψa,b(t) can be signified as 
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where a and b are indiscriminate real numbers and represent 
dilations and translations respectively. Founded on this 
definition of wavelets, the wavelet transform of a function 
f(t) is mathematically represented by  
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The inverse transform to recreate f(t) from W(a,b) is 
mathematically characterized by 
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and W(w) is the Fourier transform of mother wavelet W(t). 
Since image is treated by a digital computing machine, it is 
judicious to discretize a and b and then denote the discrete 
wavelets accordingly. The most prevalent approach of 
discretizing a and b is 
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where m and n are integers. Hence DWT can be represented 
by  
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Wavelets are the footing for representing the images in a 

hierarchy of growing resolutions, while seeing more and 
more resolution layers, we get more and more 
comprehensive look at the image. The remarkable thing 
about the wavelet decomposition is that it supports zooming 
feature at absolutely no cost in terms of surplus redundancy. 

 
B. Wavelet Families 

Any argument of wavelets activates with Haar, the 
paramount and simplest [8]. It is discontinuous and looks 
like a step function. Daubechies are compactly supported 
orthonormal wavelets thus making the discrete wavelet 
analysis practicable.  Biorthogonal wavelets have linear 
phase from which many exciting properties are derived. 
Coiflets wavelets have 2N moments equals zero and the 
scaling function have the 2N-1 moments equals zero. Both 
functions have a support of span 6N-1. Symlets are 
approximately symmetrical wavelets and are similar to 
Daubechies. Morlet wavelets have no scaling function. 
Mexican Hat wavelets are derived from a function that is 
proportional to the second derivative function of the 
Gaussian probability density function and has no scaling 
function.  Meyer wavelet and scaling function are defined in 
frequency domain. Other Real wavelets are reverse 
Biorthogonal, Gaussian derivative family, FIR based 
approximation of the Meyer wavelet. Some of the complex 
wavelets are Morlet, Frequency B-Spline and Shanon. 

 
C. Existing Wavelet Based Compression Techniques 

Wavelet based compression techniques are primarily 
focused on thresholding the wavelet coefficients and / or 
exploiting the correlation with in the subbands. In Embedded 
Zero Wavelet (EZW) Algorithm, the bits in the bit stream are 
generated in order of importance, yielding a fully embedded 
code [10]. EZW consistently produces compression results 
that are competitive with virtually all known compression 
algorithms on standard images. Set Partitioning in 
Hierarchical Trees (SPIHT) provides even better 
performance than EZW [11].  It is extremely fast and can be 

made even faster by overlooking entropy coding of the bit 
stream by arithmetic coding with only a small loss in 
presentation. Space Frequency Quantization for wavelet 
Image compression exploits both the frequency and spatial 
compaction property of the wavelet transform through the 
use of simple quantization mode[12 13]. The wavelet and 
subband coding scheme have been used over DCT-based 
methods such as JPEG, especially at high compression ratios 
[14-16]. These arrangements enable progressive transmission 
and browsing. A prioritized quantization scheme can be 
made for the transform coefficients to attain region 
dependent quality of coding. In Region of Interest based 
coding the transform domain image pyramid is subdivided 
into subpyramids, allowing the straight admittance to image 
regions, designated regions can then be treated at high 
fidelity while sacrificing the background providing variable 
resolution compression. This coding technique can be 
regarded as modification of what may be called the standard 
or first generation subband image coder; a combination of a 
scalar quantizer, subband transformer and an entropy coder. 
Each of the advances in subband image coding have been 
succeeded by using the inter band transform domain 
structure, developing the second generation coding 
techniques [10 15]. Region based compression can exploit 
vector quantization technique. An approximate linear system 
model that can calculate the suitability of candidate filter for 
compression has been established in [17]. The compression 
algorithms for digitized images used by Federal Bureau of 
Investigation are founded on adaptive uniform scalar 
quantization of discrete wavelet transform subband 
decomposition, referred as such wavelet/ scalar quantization 
method [18 19]. Embedded Image Coding method entails 
three steps, Discrete Wavelet Transform, Binary reduction 
and Differential Coding. Both A. Said and W. A. Pearlman’s 
and J. Shapiro’s embedded zerotree wavelet algorithm code 
tree algorithm use spatial alignment tree structures to 
discretely locate the important wavelet transform coefficients 
[10 11]. Here a direct approach to find the positions of these 
significant coefficients is presented. The encoding can be 
clogged at any point, which allows a target rate or distortion 
metric to be met precisely. The bits in the bit stream are 
produced in the order of significance, yielding a fully 
embedded code to successively approximate the original 
image source, thus well fit for progressive image 
transmission. The decoder can sack the decoding at any point 
and yield a lower bit reconstruction image. The regularity 
and orthogonality of wavelet function is quite favorable in 
image compression [20]. Although the compactly supported 
wavelets such as Haar has poor regularity, though it provides 
superior coding. Number of wavelet based techniques exists 
for image compression. However, in this paper only the 
initial step of image decomposition through wavelets has 
been taken into account and it is open for further exploitation 
by the existing techniques. 



 
 
 
 

III. IMAGE QUALITY METRICS 
Subjective analysis comprising Mean Opinion Score 

could not give any meaningful result as significant visual 
difference using different wavelet basis could not be 
realized. However, Mean Square Error (MSE) has been 
calculated by comparing the reconstructed image with 
original image 
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where N is the total number of pixels, I is original Image and 
Ir is reconstructed image. Peak Signal to Noise Ratio (PSNR) 
has been calculated as 
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where 255 is the peak intensity value of the signal. 
 

IV. EXPERIMENTAL RESULTS 
Three bench images, a boy image and a synthetic image 

(Fig.1) have been decomposed by diverse wavelet basis. 
Wavelet coefficients have been thresholded by a single value 
and then reconstructed. PSNR, percentage of energy of the 
reconstructed image and percentage of zeros in the image 
metric are contained in Table-I. 10% wavelet coefficients 
have been retained; however effects of retention from 15 to 
10% coefficients on PSNR and compression ratio have been 
reflected in Figure-2. The selection of wavelet basis is forced 
by linear phase, compact support and perfect reconstruction. 
The results show that good basis for compression is the 
function of image statistical parameters. A good wavelet 
basis for natural image may not be adequate for high 
frequency images or may be scarce line detector and vice 
versa. The choice of good wavelet basis can be characterized 
for image segments instead of complete image.  Further that 
localization is another dilemma. Localization efficiency is 
impeded by increase of filter coefficients. Haar gives good 
localization efficiency.   

 

 
 
 
 

It is good detector for lines as well as high frequency 
contents in image. Similarly Daubechies-4 and Symlets are 
good for natural images with smooth variations. 

 
 
Fig.2. PSNR and Compression Ratio on the percentage of retained 
coefficient of Lena 256 x 256 Image using Daubechies-4 
 

V.  CONCLUSION 
This paper addressed the importance of implementing 

the appropriate wavelet basis for synthetic and natural 
images. Experiments revealed that shorter the filter length 
better is its localization efficiency. There is no unique filter 
that can be termed as optimal. Their performance varies from 
image to image. The images constituting thin lines, curves, 
geometric shapes or sudden variations are supported by 
Haar. Whereas natural images with smooth variation are 
better coded with lengthy tab Symmetric filters. 
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TABLE-I 

Serial Wavelet Average 
PSNR 

Percentages of  Energy Retained & Zeros in Image 
Lena Cameraman Building Boy Shapes 

1 Haar 33.70 76.69 99.37 85.56 99.37 61.38 99.37 87.55 99.39 91.58 99.99 
2 Db 2 33.70 77.70 99.38 86.60 99.38 62.04 99.37 86.08 99.40 90.40 99.70 
3 Db 4 33.72 79.60 99.48 86.81 99.52 63.19 99.35 87.81 99.54 90.88 99.98 
4 Db 8 33.80 78.39 99.45 86.41 99.51 61.80 99.35 87.92 99.32 89.70 98.06 
5 Db 16 33.79 78.51 99.58 85.45 99.58 58.54 99.36 87.45 99.60 87.13 99.96 
6 Bior 1.1 33.68 76.69 99.37 85.61 99.37 61.38 99.37 87.61 99.38 91.58 99.99 
7 Bior 1.3 33.66 78.51 99.58 85.45 99.58 58.54 99.36 87.45 99.60 87.13 99.96 
8 Bior 1.5 33.55 76.69 99.37 85.61 99.37 61.38 99.37 87.61 99.38 91.58 99.99 
9 Bior 2.2 33.59 76.67 99.35 85.46 99.35 61.16 99.35 87.61 99.38 91.55 99.99 
10 Bior 2.4 33.61 79.83 99.49 86.87 99.55 63.11 99.40 81.83 99.57 90.83 99.98 
11 Bior 3.5 33.66 76.67 99.35 85.46 99.35 61.16 99.35 87.61 99.38 91.55 99.99 
12 Bior 3.7 33.70 76.69 99.37 85.61 99.37 61.38 99.37 87.61 99.38 91.58 99.99 
13 Bior 5.5 33.77 79.50 99.40 85.45 88.35 63.20 99.37 81.00 99.57 90.84 99.97 
14 Coif 1 31.96 76.69 99.37 85.56 99.37 61.38 99.37 87.55 99.39 91.58 99.99 
15 Coif 2 31.95 77.70 99.38 86.60 99.38 62.04 99.37 86.08 99.40 90.40 99.70 
16 Sym 2  33.91 79.60 99.48 86.81 99.52 63.19 99.35 87.81 99.54 90.88 99.98 
17 Sym 4 33.89 78.39 99.45 86.41 99.51 61.80 99.35 87.92 99.32 89.70 98.06 
18 Sym8 33.88 78.51 99.58 85.45 99.58 58.54 99.36 87.45 99.60 87.13 99.96 
19 Rbio 1.1 31.56 76.69 99.37 85.61 99.37 61.38 99.37 87.61 99.38 91.58 99.99 
20 Rbio 6.8 31.49 76.67 99.35 85.46 99.35 61.16 99.35 87.61 99.38 91.55 99.99 
21 Mexh 31.25 79.83 99.49 86.87 99.55 63.11 99.40 81.83 99.57 90.83 99.98 
22 Morl 31.25 76.67 99.35 85.46 99.35 61.16 99.35 87.61 99.38 91.55 99.99 
23 Gaus 1 31.29 76.69 99.37 85.61 99.37 61.38 99.37 87.61 99.38 91.58 99.99 
24 Gaus 2 31.30 79.50 99.40 85.45 88.35 63.20 99.37 81.00 99.57 90.84 99.97 
25 Lem 1 30.99 77.70 99.38 86.60 99.38 62.04 99.37 86.08 99.40 90.40 99.70 
26 Lem 4 30.87 78.39 99.45 86.41 99.51 61.80 99.35 87.92 99.32 89.70 98.06 
27 Cmor 1-1.5 31.10 78.51 99.58 85.45 99.58 58.54 99.36 87.45 99.60 87.13 99.96 
28 Cmor 1-1 31.21 76.69 99.37 85.61 99.37 61.38 99.37 87.61 99.38 91.58 99.99 
29 Fbsp  1-1-1 31.22 76.67 99.35 85.46 99.35 61.16 99.35 87.61 99.38 91.55 99.99 
30 Fbsp 2-1-0.5 31.25 76.69 99.37 85.61 99.37 61.38 99.37 87.61 99.38 91.58 99.99 
31 Shan 1-1.5 31.26 79.81 99.53 86.75 99.58 62.17 99.37 88.75 99.59 89.78 99.96 
32 Shan 1-0.5 31.27 76.69 99.37 85.56 99.37 61.38 99.37 87.55 99.39 91.58 99.99 

 


	Optimal Wavelet Basis for Image Compression
	Abstract—Unlike Fourier basis which constitutes fixed sine and cosine waves; the Wavelet Transform has infinite basis function

	Index terms —Wavelets, Optimal basis, image compression.

