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AbstractðSegmentation and separation of non-stationary signals is 

of great interest for many engineering fields and applications. In 

this paper we present the characteristic width function seen from 

the joint time-frequency representation of the desired signal. We 

also propose a segmentation algorithm that is based on the 

characteristic width of the time-frequency or the dual-frequency 

distribution of the processed signal. The characteristic function and 

width is a function that will measure the width of the evolutionary 

spectrum of non-stationary process. The Time-frequency 

representations of the signal are obtained using the discrete 

evolutionary transform DET. The characteristic width function is 

applied to measure the local energy concentration.  Segmentation 

and separation results give a good measure of the statistical 

changes due to the frequency changes and identifies the boundary 

of the these changes on time domain. 

Index TermsðSignal segmentation, Characteristics width, Joint 

Time-frequency Distribution,  Discrete Evolutionary Transform. 

I.  INTRODUCTION  

The frequency contents of many signals of applications 
such as speech, biomedical, seismic and other similar signals 
evolve with time and their local analysis is of great 
importance[1][2]. These types of signals are known as non-
stationary signals and using standard and regular Fourier 
Transform is not useful tool for their analysis. The frequency 
information who are localized in time as the case of spikes and 
high frequency bursts cannot be easily detected from the 
regular Fourier Transform and joint time-frequency analysis 
becomes the promise analysis tool [3]. 

Segmentation of multi-components or non-stationary 
signals has a considerable degree of importance for processing 
the signals in many applications such as communications, 
biomedical, and ultrasonic signals. Most of the signal 
segmentation approaches have been implemented in time 
domain analysis since the frequency analysis using Fourier 
transform only reveals spectral information of the processed 
signal and neglects the time information[4-8]. Timeïfrequency 
distribution methods have been employed for non-stationary 
signal segmentation and separation and that is due to the joint-
distribution of the signal's time and frequency which provide 
the desired segmentation [9-13].  

 

In this introduction we will continue to introduce the 
definition of the characteristic width function and the method 
used to obtain the joint time-frequency kernel.  The second part 
of the paper explains how we developed the segmentation and 
separation algorithm using the characteristic width function. In 
the third part, experimental applications with results are 
provided.  

A. Evolutionary Spectrum and the Characteristic Width  

Priestley's Evolutionary Spectrum method [14][15] assumes 
that the process is oscillatory, i.e., it is composed of sinusoidal 
components with amplitudes which are slowly varying in time. 
The process was defined as  
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where {Z(w)}, an orthogonal increments process, has the 
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nʟ(w) is the family of functions as an amplitude envelope 
modulating a carrier  
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The carrier frequency ɓ(ɔ) is selected so that the magnitude 
of the Fourier Transform of the envelope An(w), with respect to 
n, exists and has a maximum at zero frequency. When {x(n)} is 
stationary process, the family of functions, { nʟ(w)}, are the 
complex exponential, and the expression will reduce to  
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The energy distribution of the signal jointly over time and 
frequency is then given by 
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Thus the oscillatory evolutionary spectrum of the process 

with respect to the family of function An(w)e
jwn

  was defined as  
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The Wold-Cramer representation [16] was defined as  
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and coincides with Priestleyôs evolutionary spectrum  if assume 
that H(n,w) is an oscillatory function. Thus for a non-stationary 
deterministic signal, or a deterministic signal with a time-
dependent spectrum, x(n), 0 Ò n Ò N-1, an analogous 
representation is possible[17][18] : 
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where A(n,wk) is the time-dependent Gabor kernel obtained 
using Gabor expansion  
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where w(n,l) is the time-varying Gabor window obtained from 
the Gaussian function and defined as the Discrete Evolutionary 
Transform  DET [17][18]. 

    The energy density or the evolutionary spectrum is 
calculated as 
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and the magnitude of the evolutionary kernel is the energy 
density in the time-frequency plane and also satisfies the time 
and frequency marginals. 

B. Characteristic Width 

According to Priestley's definition of the evolutionary 
spectral representation [14], of the {x(n)}, is a process whose 
non-stationary characteristics are changing slowly over time 
and for each w, An(w) is, in some sense, a slowly varying 
function of n.  A convenient characterization of a slowly 
varying function is obtained by specifying that its Fourier 
transform must be highly concentrated in the region of zero 
frequency. The measure of the width can be done by 
computing  
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    Where An(w) is the time-varying kernel and its Fourier 
transforms has to be normalized to have a unit integral for each 
ɤ.   

     The characteristic width of the family was defined as the 
maximum value of the inverse of the width function 
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If the process is stationary where the family function is just 
the complex exponential and does not slowly vary, then the 
characteristic width is infinite. For the semi-stationary process, 
the characteristic width is calculated as in the last equation and 
2ˊBx can be interpreted as the maximum interval over which 
the process may be treated as approximately stationary.  Thus 
the characteristic width is a characterization of the time-
dependent spectrum and can be calculated efficiently using our 
approach shown in the next section. 

II . BANDWIDTH ESTIMATION AND SIGNAL SEGMENTATION  

A very useful approach of identifying the evolutionary 
spectrum boundaries (bandwidth) can be obtained from the 
width function. Instead of the characteristic width, we consider 
the minimum value of the inverse of the width function which 
indicates the location of the frequency where the power of the 
energy is at maximum.  

Thus the characteristic width can be redefined as  
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where Bx is the width function defined before.  

    Now for finite deterministic non-stationary signal x(n), the 
function | |᷊ is assume to be a unit function, and then the width 
function will be reduced to  
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     Now, by applying the special function defined in (2) which 
gives the minimum value of the inverse of the width function 
corresponds to the location of the maximum energy in the 
frequency domain. Once we identify the frequency location of 
which the energy is concentrated at, the width of the spectrum 
can be approximated by a threshold value. The intersection of 
this threshold with the inverse of the width function gives the 
boundaries of the evolutionary spectrum of the signal. This 
approach will provide more details of the energy distribution 
and will allow measuring the dynamic changes of the signal. 
The segmentation of any multi-component signal can be 
achieved using this approach as can be seen in the experimental 
section. 

     In order to obtain the desired segmentation, we need to 
chunk and overlap the processed signal using the time-varying 
windows w(n,w).  Therefore, each overlapped process gives 
scalar value as the characteristic width. By overlapping and 
repeating same procedure will provide a number of 
characteristic width victor of length equal to the number of 
overlapping chunks or frames.   
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where  Ű  is the time shift or frame. 

    We notice that the length of the characteristic victor is not 

equal to the length of the processed signal. Further signal 

processing is needed at this stage and non-linear interpolation 

is used to interpolate the data signal to the original signal data 

points. Due to the nonlinearity of the function P(Ű), a second 

order Lagrangian interpolation polynomial is used as  
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where n stands for the nth order polynomial and  
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is a weighting function that includes a product on (n-1) terms 
with terms of  j=1  omitted.   

 

III . SIMULATION AND RESULTS 

To verify the work of our approach, we will consider 
applying for deterministic non-stationary signal. The expected 
results must detect and illustrate the segments boundaries in 
time and frequency domains. 

 Now let us consider the following multi-component signal 
x(n), 
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which is composed of three equal segments each with different 
frequency.  

 According to our segmentation system, the DET is 
applied to the noisy signal x(n) in order to obtain its time-
dependent spectrum. Notice that we used the overlapping 
scheme described in section II. The evolutionary 
spectrum of the signal is shown in Fig. 1. Fig. 2 shows 
the characteristic width function of the evolutionary 
spectrum for one single frame of the signal. Additional 
interpolation was performed to the resulted characteristic 
function in order to interpolate it to an equal length of the 
original one. The segmentation result is shown in Fig. 3 
where original signal x(n) is shown at the top and below 
is the final segmentation vector obtained from our 
proposed algorithm . 

 

IV. CONCLUSIONS 

 
In this work, we have presented and proposed a practical 

use of the characteristic function of the evolutionary spectrum 
for non-stationary signals. The evolutionary spectrum is 
computed using the discrete evolutionary transform DET. The 
characteristic width function which measures the bandwidth of 
the time-dependent spectrum of the signal is also used to give a 
special measuring function allowing to detect the variation of 
the signal due to its frequency changes and is the basis for our 
segmentation approach. In the experimental section, we have 
applied our algorithm for segmentation of multi-component 
signal and was successfully able to identify the different 
segments of the signal.  
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Figure 1.  Evolutionary spectrum of the signal 
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Figure 2.  Characteristic width function for a single frame. 
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Figure 3.  The multi-component signal and the final  
segmentation victor. 
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