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Abstract Segmentation and separation of nestationary signals is In this introductionwe will continue tointroduce the
of great interest for many engineering fields and applications. In definition of the characteristic widtfunction and the method
this paper we present the characteristic width function seen from ysed to obtain the joint tirrieequency kernelThe second part
the joint timefrequency representation of the desd signal. We  of the paper explains how we developed thgnsentation and
also propose a segmentation algorithm that is based on theseparation algorithm using the characteristic width function. In

characteristic width of the timdrequency or the duafrequency  the third part experimental applications with results are
distribution of the processed signal. The characteristic function and provided.

width is a function that will measure the willtof the evolutionary

spectrum of norstationary process. The Timequency . . .
representations of the signal are obtained using the discreteA Evolutionary Spectrum and the Characteristic Width
evolutionary transform DET. The characteristic width function is Priestley's Evolutionary Spectrumethod [L4][15] assunes
applied to measure the local energy concentratioBegmentation  that the process is oscillatory, i.e., it is composed of sinusoidal

and separation results give a good measure of the statisticalcomponents with amplitudes which are slowly varying in time.
changes due to the frequency changes adéntifiesthe boundary  The process was defined as

of the these changes on time domain.

IndexTernmsd Signal segmentation, Characteristics widthoint X(t) = ~ f (W)dZ(W)
Time-frequency Distritution, Discrete Evolutionary Transform. n= n

I~ INTRODUCTION where {Z(w)}, an orthogonal increments process, has the
The frequency contents ahany signals ofapplications property
such asspeechbiomedical seismic and other similar signals

evolve with time and their local analysis of great . . £0, wheng, g f{
importance[1][2] These type®f signals are known ason E[dZ (g)dZ(g )] :FO .
stationary signal and usingstandardand regular Fourier [ d,(9), wheng=g Y

Transform is not usefubol for their analysis. The frequency

informationwho arelocalized in timeas the case apikes and

high frequency bursts cannot be easilyedad from the ‘n(W) is the family of functions as an amplitude envelope
regular Fourier Transform and joint tirfilequency analysis Mmodulating a carrier

becomes the promise analysisl [3]. ip
£ (n) = A (W)

Segmentation of mukltomponents or nestationary
signals has a considerable degree of importance for processing

the signals in many applicahs such as communications,  The carrier frequencl ( is 3elected so that the magnitude
biomedical, and ultrasonic signals. Most of the signabf the Fourier Transform of the envelopgw), with respect to
segmentation approaches have been imeiged in time n exists and has a maximuahzero frequency. Whe(n)} is
domain analysissince the frequency analysis using Fourierstationary process, the family of functiofs.(w)}, are the

transform only reveals spectral information of the proakssecomplex exponential, and the expression will reduce to
signal and neglects the time informatioi}} Time frequency

distribution methods have been employed for-stationary f — . juwm
signal segmentation and separation and that is due to the joint (W) =e
distribution of the signal's time and frequency which provide

h i iorBf13].
the deged segmentatiorBf13] The energy distribution of the signal jointly over time and

frequency is then gan by



2. _ 8 2 Where A,(w) is the timevarying kernel and its Fourier
E[|X(n)| 1= n |A1(W)| dw. transforms has to be normalized to have a unit integral for each
¥.

Thus the oscillatory evolutionary spectrum of the process. alihn?u??/ﬁﬁteegﬂﬁev;mgsg (;P'[ehéavl;rillc:}[lh\:‘vl?:ct(ijgr?ned as the
with respect to the family of functioh,(w)e"" wasdefined as

) B, =sup, B (W)™ (1)
Ses(no ) =|A, (W)
If the process is stationary where the family function is just
TheWold-Cramer representatiof] wasdefined as the complex exponential and does not slowly vangntthe
2 _ characteristic width is infinite. For the sestationary process,
x(n) = rl: H (n, l/l/)e'”“dZ(W) the characteristic width is calculated as in the last equation and
- 2 " Ran be interpreted as the maximum interval over which

andcoi ncides with Pri esifdssme sthedipess inayibg heatedas apprexipatgly stgfiondrys
thatH(n,w)is an oscillatory function. Thuer a nonstationary ~ the characteristic width is”a characterization of the -time
deterministic signal, or a deterministic signal with a time dependent spectrum and can be calculated efficiently using our
dependent spectrumx ( n) , 0 -1 annanalGyous\ @pproach shown in the next section.
representation is possipl&][18] :

II.  BANDWIDTH ESTIMATION AND SIGNAL SEGMENTATION

K-1 ; i ;
s ; A very useful approach of identifying the dwtoonary
x(n)=a A(n, n)e"™" O¢n¢N-1 spectrum boundaries (bandwidth) can be obtained from the
k=0 width function. Instead of the characteristic width, we consider

the minimum value of the inverse of the width function which
indicates the location of the frequency where the power of the
energy is at maximum.

where A(n,w) is the timedependent Gabor kernel tained
using Gabor expansion

A(n W) —_ Nal X(I)W(n |)e- jwl Thus the characteristic width can be redefined as
VW) — ’

1=0
—_ H -1

wherew(n,l) is the time-varying Gabor windowobtained from B, =min BX(W) (2)

the Gaussian functioand defined as the Discrete Evolutionary

Transform DET[17][18].

The energy density or the evolutionary spectrum i%u
calculated as

whereB, is the width functiordefined before

Now for finite deterministicnonstationary signak(n), the
nction|, |is assume to be anit function and therthe width
functionwill be reduced to

1 2 N-1
S(n, v ) =+ AN ) Bx(w):%e} X (n, )| (3)

and the magnitude of the evolutionary kernel is the energy ) ) ) ] ) i
density in the the-frequency plane and also satisfies the time = NOw, by applying thespecialfunction defined in (2) which

and frequency marginals. givesthe minimum value of the inverse of the width function
corresponds tdhe location of the maximum energy in the
B. Characteristic Width frequency domain. Once we identify the frequency location of

. . , . ) which the energy is concentrated at, the width of the spectrum
According to Priestley's definition of the evolutionary can e approximated by a threshold value. The intersection of
spectral representatiod4], of the {x(n)}, is a process whose thjs threshold with the inverse of the width function gives the
nonstationary characteristics are changsigwly over time o ndares of the evolutionary spectrum of the sigrEtis
and for eachw, A(w) is, in some sense, a slowly varying annroach will provide more details of the energy distribution
function of n. A convenient characterization of a slowly anqg will allow measuring the dynamic changes of the signal.
varying function is obtained by specifying that its Fouriertpe segmentation of any muttomponent signal can be

transform must be highly concentrated in the region of zergcnieved using this approaah can be seen in the experimental
frequency. The measure of the width can be done bygction.

computin
PEEng In order to obtain the desired segmentation, we need to
. chunk and overlaghe processed signal using tivae-varying
Bx(W) =a |C7"A1(W)| 1) windows w(n,w) Therefore, each overlapped process gives
n=0 scalar value as the charactéid width. By overlapping and
repeating sameprocedure will provide a number of
characteristicwidth victor of lengthequal to the number of
overlapping chunks or frames.



1K 2
P(1) = & Xt ) (4)
k=0 IV. CONCLUSIONS
where Uis the time shift or frame.

. T . In this work, we have presenteshd proposed a practical
We notice that th length of the charactgrlstlc wctorl IS NOL 56 ofthe charactestic function of the evolutionary spectrum
equal to the length of the processed sigialrther signal for nonstationary signals. The evolatiary spectrum is

processing is needed at this stage andlimear interpolation computed using the discrete evolutionary transfeMaT. The
is usedto interpolate the data signal to the original signal datg&haracteristic width function kich measurethe bandwidth of

points. Due to the onlinearity of the functio® ( U) , a e g_r%egerqe@d_ent spectrum dfe signals also uséto give a
L . . special measuringunction allowing to detect the ariation of
order Lagrangian interpolation polynomial is used as

0 segmentation approachn the experimental section,enhave
fn(P) =a L (P)f (Ff) ®) applied our algorithmfor segmentation ofMmulti-conponent
i=0 signal and was successfully able to identify the different

wheren stands for thath order polynomial and segments of the signal

A P-P
L (P) = O W (6) ACKNOWLEDGMENT
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is a weighting function that includes a product ofl) terms
with terms of j=1 omitted.

Ill.  SIMULATION AND RESULTS

To verify the work of our apprah, we will consider
applying fordeterministic norstationary signal. The expected
results must detect and illustrate the segments boundaries in
time and frequency domains.

Now let us consider thiollowing multi-component signal
x(n),

&x(n) =sin04Gi @), =1..100

x(n) :ixz(n) =sin0.3@@,),  t=101...200(

[ X (n) =sin02@&,), t =201...300y,

—C

which is composed of three equal segments each with different
frequency.

According to our segmentation systetime DET is 0 o
applied to the noisy signa(n) in order toobtain its time
dependent spectrum. Notice that we used the overlapping Figure 1. Evolutionary pectrum of the signal

scheme described in section IThe evolutionary
spectrum of the signas shown in Fig.1. Fig. 2 shows
the characteristic width function of the evolutionary
spectrum for onesingle fame of the signal.Additional
interpolation was performed to the resulted characteristic
functionin order to interpolate it to an equal length of the
original one The segmentation result is shownFig. 3
whereoriginal signalx(n) is shown at the topndbelow

is the final segmentation vector obtained from our
proposedilgorithm.

the signal due to its frequency changes and is the basis for our
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Figure 2. Characteristic width functiofor a single frame.
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Figure 3. The mulktomponent signal and the final

segmentation victor.
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